Quantum codes from skew constacyclic codes over the ring Fq[u, v]/⟨u2-1, v2-1, uv - vu⟩

被引:31
作者
Bag, Tushar [1 ]
Dinh, Hai Q. [2 ,3 ]
Upadhyay, Ashish K. [1 ]
Bandi, Ramakrishna [4 ]
Yamaka, Woraphon [5 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Patna 801103, Bihar, India
[2] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[4] Int Inst Informat Technol Naya Raipur, Dept Math, Atal Nagar 493661, India
[5] Chiang Mai Univ, Fac Econ, Ctr Excellence Econometr, Chiang Mai 52000, Thailand
关键词
Skew constacyclic codes; Dual codes; Quantum error-correcting codes; CYCLIC CODES; CONSTRUCTION;
D O I
10.1016/j.disc.2019.111737
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study uantum error-correcting codes from skew constacyclic codes over the ring R = F-q[u, v]/< u(2) - 1, v(2) - 1, uv - vu >, where q = p(m) for any odd prime p and positive integer m. We decompose skew constacyclic codes over the ring R as a direct sum of skew constacyclic codes over F-q. Self-dual skew constacyclic codes over the ring R are characterized. Necessary and sufficient conditions for skew negacyclic and skew constacyclic codes to be dual-containing are obtained. As an application, we construct new quantum error-correcting codes from skew constacyclic codes over F-q. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On a Class of (δ plus αu2)-Constacyclic Codes over Fq[u] =/⟨u4⟩
    Cao, Yuan
    Cao, Yonglin
    Gao, Jian
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (07) : 1438 - 1445
  • [32] Hamming and Symbol-Pair Distances of Constacyclic Codes of Length 2ps over R=Fpm[u,v]⟨u2,v2,uv-vu⟩
    Acharya, Divya
    Poojary, Prasanna
    Bhatta, Vadiraja G. R.
    SYMMETRY-BASEL, 2025, 17 (03):
  • [33] Cyclic codes and λ1 + λ2u + λ3v + λ4uv-constacyclic codes over Fp + uFp + vFp + uvFp
    Zheng, Xiying
    Kong, Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 306 : 86 - 91
  • [34] On quantum and LCD Codes Over The Ring Fq + vFq + v2Fq
    Ali, S.
    Mohammad, G.
    Jeelani
    Khan, N.
    Sharma, P.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (09)
  • [35] Quantum codes from cyclic codes over Fq + vFq + v2Fq + v3Fq
    Gao, Jian
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (08)
  • [36] CYCLIC CODES OVER THE RING Fp[u, v, w]/⟨u2, v2, w2, uv - vu, vw - wv, uw - wu⟩
    Kewat, Pramod Kumar
    Kushwaha, Sarika
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 115 - 137
  • [37] Non-binary quantum codes from constacyclic codes over Fq[u1, u2, ..., uk]/⟨ui3 = ui, uiuj = ujui⟩
    Kong, Bo
    Zheng, Xiying
    OPEN MATHEMATICS, 2022, 20 (01): : 1013 - 1020
  • [38] Quantum Codes Obtained From Constacyclic Codes Over a Family of Finite Rings Fp[u1, u2, ... , us]
    Dinh, Hai Q.
    Bag, Tushar
    Pathak, Sachin
    Upadhyay, Ashish Kumar
    Chinnakum, Warattaya
    IEEE ACCESS, 2020, 8 : 194082 - 194091
  • [39] Maximal entanglement EAQECCs from cyclic and constacyclic codes over Fq+v1Fq+...+vs-1Fq
    Zhang, Yaozong
    Liu, Ying
    Hou, Xiaotong
    Gao, Jian
    Ma, Fanghui
    QUANTUM INFORMATION PROCESSING, 2022, 21 (09)
  • [40] (1-2u3)-constacyclic codes and quadratic residue codes over Fp[u]/⟨u4 - u⟩
    Raka, Madhu
    Kathuria, Leetika
    Goyal, Mokshi
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (04): : 459 - 473