Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models

被引:46
|
作者
Aengenheister, Leonie [1 ]
Dietrich, Doerthe [2 ]
Sadeghpour, Amin [3 ]
Manser, Pius [1 ]
Diener, Liliane [1 ]
Wichser, Adrian [4 ]
Karst, Uwe [2 ]
Wick, Peter [1 ]
Buerki-Thurnherr, Tina [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Particles Biol Interact, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
[2] Westfalische Wilhelms Univ Munster, Inst Inorgan & Analyt Chem, Corrensstr 28-30, D-48149 Munster, Germany
[3] Empa, Swiss Fed Labs Mat Sci & Technol, Ctr Xray Analyt, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
[4] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Adv Analyt Technol, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
来源
JOURNAL OF NANOBIOTECHNOLOGY | 2018年 / 16卷
基金
欧盟第七框架计划;
关键词
Gold nanoparticle; Placental uptake and translocation; Ex vivo placenta perfusion; Placental in vitro co-culture model; Nanoparticle agglomeration; COLLOIDAL STABILITY; PERFUSION; SIZE; TRANSLOCATION; AGGLOMERATION; PENETRATION; TRANSPORT; IMPACT; MICE;
D O I
10.1186/s12951-018-0406-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Gold nanoparticles (AuNPs) are promising candidates to design the next generation NP-based drug formulations specifically treating maternal, fetal or placental complications with reduced side effects. Profound knowledge on AuNP distribution and effects at the human placental barrier in dependence on the particle properties and surface modifications, however, is currently lacking. Moreover, the predictive value of human placental transfer models for NP translocation studies is not yet clearly understood, in particular with regards to differences between static and dynamic exposures. To understand if small (3-4 nm) AuNPs with different surface modifications (PEGylated versus carboxylated) are taken up and cross the human placental barrier, we performed translocation studies in a static human in vitro co-culture placenta model and the dynamic human ex vivo placental perfusion model. The samples were analysed using ICP-MS, laser ablation-ICP-MS and TEM analysis for sensitive, label-free detection of AuNPs. Results: After 24 h of exposure, both AuNP types crossed the human placental barrier in vitro, although in low amounts. Even though cellular uptake was higher for carboxylated AuNPs, translocation was slightly increased for PEGylated AuNPs. After 6 h of perfusion, only PEGylated AuNPs were observed in the fetal circulation and tissue accumulation was similar for both AuNP types. While PEGylated AuNPs were highly stable in the biological media and provided consistent results among the two placenta models, carboxylated AuNPs agglomerated and adhered to the perfusion device, resulting in different cellular doses under static and dynamic exposure conditions. Conclusions: Gold nanoparticles cross the human placental barrier in limited amounts and accumulate in placental tissue, depending on their size- and/or surface modification. However, it is challenging to identify the contribution of individual characteristics since they often affect colloidal particle stability, resulting in different biological interaction in particular under static versus dynamic conditions. This study highlights that human ex vivo and in vitro placenta models can provide valuable mechanistic insights on NP uptake and translocation if accounting for NP stability and non-specific interactions with the test system.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Modeling placental transport: Correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion
    Poulsen, Marie Sonnegaard
    Rytting, Erik
    Mose, Tina
    Knudsen, Lisbeth E.
    TOXICOLOGY IN VITRO, 2009, 23 (07) : 1380 - 1386
  • [12] In vitro and ex vivo models of adipocytes
    Dufau, Jeremy
    Shen, Joanne X.
    Couchet, Morgane
    Barbosa, Thais De Castro
    Mejhert, Niklas
    Massier, Lucas
    Griseti, Elena
    Mouisel, Etienne
    Amri, Ez-Zoubir
    Lauschke, Volker M.
    Ryden, Mikael
    Langin, Dominique
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2021, 320 (05): : C822 - C841
  • [13] Human Skin Cancer: an Overview Of Animal, Ex Vivo, and In Vitro Models
    Gaviria Agudelo, Catalina
    Restrepo, Luz Marina
    CURRENT DERMATOLOGY REPORTS, 2022, 11 (03) : 168 - 177
  • [14] Human Skin Cancer: an Overview Of Animal, Ex Vivo, and In Vitro Models
    Catalina Gaviria Agudelo
    Luz Marina Restrepo
    Current Dermatology Reports, 2022, 11 : 168 - 177
  • [15] Human ex vivo and in vitro disease models to study food allergy
    Hung, Lisa
    Obernolte, Helena
    Sewald, Katherina
    Eiwegger, Thomas
    ASIA PACIFIC ALLERGY, 2019, 9 (01)
  • [16] In vitro models of the human placental barrier - In regione caecorum rex est luscus
    Carreira, Sara Correia
    Walker, Laura
    Paul, Kai
    Saunders, Margaret
    NANOTOXICOLOGY, 2015, 9 : 135 - 136
  • [17] In Vitro, Ex Vivo, and In Vivo Approaches for Investigation of Skin Scarring: Human and Animal Models
    Neves, Lia M. G.
    Wilgus, Traci A.
    Bayat, Ardeshir
    ADVANCES IN WOUND CARE, 2023, 12 (02) : 97 - 116
  • [18] In Vitro, Ex Vivo, and In Vivo Models for the Study of Pemphigus
    Lotti, Roberta
    Atene, Claudio Giacinto
    Zanfi, Emma Dorotea
    Bertesi, Matteo
    Zanocco-Marani, Tommaso
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [19] Placental transfer of bromocriptine in an ex vivo human placental perfusion model
    Zheng, Qiaoling
    Zhou, Qiong
    Li, Juan
    Tian, Yuqin
    Huang, Hua
    Yao, Qin
    Wang, Jingjing
    Zhang, Jun
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2019, 32 (07): : 1155 - 1159
  • [20] Ex Vivo Effects of Valproic Acid on the Human Placental Barrier: Findings from Gene Array Studies
    Tetro, N.
    Imbar, T.
    Wohl, D.
    Eisenberg, I.
    Yagel, S.
    Shmuel, M.
    Eyal, S.
    EPILEPSIA, 2018, 59 : S30 - S30