Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models

被引:50
作者
Aengenheister, Leonie [1 ]
Dietrich, Doerthe [2 ]
Sadeghpour, Amin [3 ]
Manser, Pius [1 ]
Diener, Liliane [1 ]
Wichser, Adrian [4 ]
Karst, Uwe [2 ]
Wick, Peter [1 ]
Buerki-Thurnherr, Tina [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Particles Biol Interact, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
[2] Westfalische Wilhelms Univ Munster, Inst Inorgan & Analyt Chem, Corrensstr 28-30, D-48149 Munster, Germany
[3] Empa, Swiss Fed Labs Mat Sci & Technol, Ctr Xray Analyt, Lerchenfeldstr 5, CH-9014 St Gallen, Switzerland
[4] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Adv Analyt Technol, Ueberlandstr 129, CH-8600 Dubendorf, Switzerland
基金
欧盟第七框架计划;
关键词
Gold nanoparticle; Placental uptake and translocation; Ex vivo placenta perfusion; Placental in vitro co-culture model; Nanoparticle agglomeration; COLLOIDAL STABILITY; PERFUSION; SIZE; TRANSLOCATION; AGGLOMERATION; PENETRATION; TRANSPORT; IMPACT; MICE;
D O I
10.1186/s12951-018-0406-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Gold nanoparticles (AuNPs) are promising candidates to design the next generation NP-based drug formulations specifically treating maternal, fetal or placental complications with reduced side effects. Profound knowledge on AuNP distribution and effects at the human placental barrier in dependence on the particle properties and surface modifications, however, is currently lacking. Moreover, the predictive value of human placental transfer models for NP translocation studies is not yet clearly understood, in particular with regards to differences between static and dynamic exposures. To understand if small (3-4 nm) AuNPs with different surface modifications (PEGylated versus carboxylated) are taken up and cross the human placental barrier, we performed translocation studies in a static human in vitro co-culture placenta model and the dynamic human ex vivo placental perfusion model. The samples were analysed using ICP-MS, laser ablation-ICP-MS and TEM analysis for sensitive, label-free detection of AuNPs. Results: After 24 h of exposure, both AuNP types crossed the human placental barrier in vitro, although in low amounts. Even though cellular uptake was higher for carboxylated AuNPs, translocation was slightly increased for PEGylated AuNPs. After 6 h of perfusion, only PEGylated AuNPs were observed in the fetal circulation and tissue accumulation was similar for both AuNP types. While PEGylated AuNPs were highly stable in the biological media and provided consistent results among the two placenta models, carboxylated AuNPs agglomerated and adhered to the perfusion device, resulting in different cellular doses under static and dynamic exposure conditions. Conclusions: Gold nanoparticles cross the human placental barrier in limited amounts and accumulate in placental tissue, depending on their size- and/or surface modification. However, it is challenging to identify the contribution of individual characteristics since they often affect colloidal particle stability, resulting in different biological interaction in particular under static versus dynamic conditions. This study highlights that human ex vivo and in vitro placenta models can provide valuable mechanistic insights on NP uptake and translocation if accounting for NP stability and non-specific interactions with the test system.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment [J].
Mahapatra, Indrani ;
Sun, Tian Yin ;
Clark, Julian R. A. ;
Dobson, Peter J. ;
Hungerbuehler, Konrad ;
Owen, Richard ;
Nowack, Bernd ;
Lead, Jamie .
JOURNAL OF NANOBIOTECHNOLOGY, 2015, 13
[32]   Nanoparticle colloidal stability in cell culture media and impact on cellular interactions [J].
Moore, Thomas L. ;
Rodriguez-Lorenzo, Laura ;
Hirsch, Vera ;
Balog, Sandor ;
Urban, Dominic ;
Jud, Corinne ;
Rothen-Rutishauser, Barbara ;
Lattuada, Marco ;
Petri-Fink, Alke .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (17) :6287-6305
[33]   Magnetic Nanoparticles Interact and Pass an In Vitro Co-Culture Blood-Placenta Barrier Model [J].
Mueller, Elena K. ;
Graefe, Christine ;
Wiekhorst, Frank ;
Bergemann, Christian ;
Weidner, Andreas ;
Dutz, Silvio ;
Clement, Joachim H. .
NANOMATERIALS, 2018, 8 (02)
[34]   Impact of particle size and surface modification on gold nanoparticle penetration into human placental microtissues [J].
Muoth, Carina ;
Grossgarten, Mandy ;
Karst, Uwe ;
Ruiz, Jaime ;
Astruc, Didier ;
Moya, Sergio ;
Diener, Liliane ;
Grieder, Kathrin ;
Wichser, Adrian ;
Jochum, Wolfram ;
Wick, Peter ;
Buerki-Thurnherr, Tina .
NANOMEDICINE, 2017, 12 (10) :1119-1133
[35]   Nanoparticle transport across the placental barrier: pushing the field forward! [J].
Muoth, Carina ;
Aengenheister, Leonie ;
Kucki, Melanie ;
Wick, Peter ;
Buerki-Thurnherr, Tina .
NANOMEDICINE, 2016, 11 (08) :941-957
[36]   Kinetics of gold nanoparticles in the human placenta [J].
Myllynen, Paivi K. ;
Loughran, Michael J. ;
Howard, C. Vyvyan ;
Sormunen, Raija ;
Walsh, Adrian A. ;
Vahakangas, Kirsi H. .
REPRODUCTIVE TOXICOLOGY, 2008, 26 (02) :130-137
[37]   Pulmonary exposure to metallic nanomaterials during pregnancy irreversibly impairs lung development of the offspring [J].
Paul, Emmanuel ;
Franco-Montoya, Marie-Laure ;
Paineau, Erwan ;
Angeletti, Bernard ;
Vibhushan, Shamila ;
Ridoux, Audrey ;
Tiendrebeogo, Arnaud ;
Salome, Murielle ;
Hesse, Bernhard ;
Vantelon, Delphine ;
Rose, Jerome ;
Canoui-Poitrine, Florence ;
Boczkowski, Jorge ;
Lanone, Sophie ;
Delacourt, Christophe ;
Pairon, Jean-Claude .
NANOTOXICOLOGY, 2017, 11 (04) :484-495
[38]   Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake [J].
Pelaz, Beatriz ;
del Pino, Pablo ;
Maffre, Pauline ;
Hartmann, Raimo ;
Gallego, Marta ;
Rivera-Fernández, Sara ;
de la Fuente, Jesus M. ;
Nienhaus, G. Ulrich ;
Parak, Wolfgang J. .
ACS NANO, 2015, 9 (07) :6996-7008
[39]   Demonstration of the Clathrin- and Caveolin-Mediated Endocytosis at the Maternal-Fetal Barrier in Mouse Placenta after Intravenous Administration of Gold Nanoparticles [J].
Rattanapinyopituk, Kasem ;
Shimada, Akinori ;
Morita, Takehito ;
Sakurai, Masashi ;
Asano, Atsushi ;
Hasegawa, Tatsuya ;
Inoue, Kenichiro ;
Takano, Hirohisa .
JOURNAL OF VETERINARY MEDICAL SCIENCE, 2014, 76 (03) :377-387
[40]   Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo [J].
Rinkenauer, Alexandra C. ;
Press, Adrian T. ;
Raasch, Martin ;
Pietsch, Christian ;
Schweizer, Simon ;
Schwoerer, Simon ;
Rudolph, Karl L. ;
Mosig, Alexander ;
Bauer, Michael ;
Traeger, Anja ;
Schubert, Ulrich S. .
JOURNAL OF CONTROLLED RELEASE, 2015, 216 :158-168