Gold nanoparticle;
Placental uptake and translocation;
Ex vivo placenta perfusion;
Placental in vitro co-culture model;
Nanoparticle agglomeration;
COLLOIDAL STABILITY;
PERFUSION;
SIZE;
TRANSLOCATION;
AGGLOMERATION;
PENETRATION;
TRANSPORT;
IMPACT;
MICE;
D O I:
10.1186/s12951-018-0406-6
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Background: Gold nanoparticles (AuNPs) are promising candidates to design the next generation NP-based drug formulations specifically treating maternal, fetal or placental complications with reduced side effects. Profound knowledge on AuNP distribution and effects at the human placental barrier in dependence on the particle properties and surface modifications, however, is currently lacking. Moreover, the predictive value of human placental transfer models for NP translocation studies is not yet clearly understood, in particular with regards to differences between static and dynamic exposures. To understand if small (3-4 nm) AuNPs with different surface modifications (PEGylated versus carboxylated) are taken up and cross the human placental barrier, we performed translocation studies in a static human in vitro co-culture placenta model and the dynamic human ex vivo placental perfusion model. The samples were analysed using ICP-MS, laser ablation-ICP-MS and TEM analysis for sensitive, label-free detection of AuNPs. Results: After 24 h of exposure, both AuNP types crossed the human placental barrier in vitro, although in low amounts. Even though cellular uptake was higher for carboxylated AuNPs, translocation was slightly increased for PEGylated AuNPs. After 6 h of perfusion, only PEGylated AuNPs were observed in the fetal circulation and tissue accumulation was similar for both AuNP types. While PEGylated AuNPs were highly stable in the biological media and provided consistent results among the two placenta models, carboxylated AuNPs agglomerated and adhered to the perfusion device, resulting in different cellular doses under static and dynamic exposure conditions. Conclusions: Gold nanoparticles cross the human placental barrier in limited amounts and accumulate in placental tissue, depending on their size- and/or surface modification. However, it is challenging to identify the contribution of individual characteristics since they often affect colloidal particle stability, resulting in different biological interaction in particular under static versus dynamic conditions. This study highlights that human ex vivo and in vitro placenta models can provide valuable mechanistic insights on NP uptake and translocation if accounting for NP stability and non-specific interactions with the test system.
机构:
Taipei Med Univ, Grad Inst Data Sci, Taipei, TaiwanTaipei Med Univ, Grad Inst Data Sci, Taipei, Taiwan
Chou, Che-Yu
Lin, Pinpin
论文数: 0引用数: 0
h-index: 0
机构:
Natl Hlth Res Inst, Natl Inst Environm Hlth Sci, Zhunan Township, Miaoli County, TaiwanTaipei Med Univ, Grad Inst Data Sci, Taipei, Taiwan
Lin, Pinpin
Kim, Jongwoon
论文数: 0引用数: 0
h-index: 0
机构:
Korea Res Inst Chem Technol KRICT, Chem Safety Res Ctr, Daejeon, South KoreaTaipei Med Univ, Grad Inst Data Sci, Taipei, Taiwan
Kim, Jongwoon
Wang, Shan-Shan
论文数: 0引用数: 0
h-index: 0
机构:
Taipei Med Univ, Grad Inst Data Sci, Taipei, TaiwanTaipei Med Univ, Grad Inst Data Sci, Taipei, Taiwan
Wang, Shan-Shan
Wang, Chia-Chi
论文数: 0引用数: 0
h-index: 0
机构:
Natl Taiwan Univ, Sch Vet Med, Dept & Grad Inst Vet Med, Taipei, TaiwanTaipei Med Univ, Grad Inst Data Sci, Taipei, Taiwan
Wang, Chia-Chi
Tung, Chun-Wei
论文数: 0引用数: 0
h-index: 0
机构:
Taipei Med Univ, Grad Inst Data Sci, Taipei, Taiwan
Natl Hlth Res Inst, Inst Biotechnol & Pharmaceut Res, Zhunan Township, Miaoli County, TaiwanTaipei Med Univ, Grad Inst Data Sci, Taipei, Taiwan