Nonlocal problems for Boussinesq equations

被引:5
作者
Shakhmurov, Veli B. [1 ,2 ]
机构
[1] Okan Univ, Dept Mech Engn, TR-34959 Istanbul, Turkey
[2] Khazar Univ, Baku, Azerbaijan
关键词
Boussinesq equations; Semigroups of operators; Hyperbolic equations; Hyperbolic-operator equations; Cosine operator functions; Operator valued L-p-Fourier multipliers; CAUCHY-PROBLEM; THEOREMS; SPACES;
D O I
10.1016/j.na.2016.04.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence and uniqueness of solution of the integral boundary value problem for abstract Boussinesq equations are obtained. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:134 / 151
页数:18
相关论文
共 52 条
[11]  
DAVIES EB, 1987, P LOND MATH SOC, V55, P181
[12]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[13]   ORDINARY DIFFERENTIAL EQUATIONS IN LINEAR TOPOLOGICAL SPACES .I. [J].
FATTORINI, HO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 5 (01) :72-+
[14]  
Fattorini HO., 1985, Second Order Linear Differential Equations in Banach Spaces
[15]   Regular boundary value problems for complete second order elliptic differential-operator equations in UMD Banach spaces [J].
Favini, Angelo ;
Shakhmurov, Veli ;
Yakubov, Yakov .
SEMIGROUP FORUM, 2009, 79 (01) :22-54
[16]   Uniform global attractors for non-isothermal viscous and non-viscous Cahn-Hilliard equations with dynamic boundary conditions [J].
Gal, Ciprian G. ;
Miranville, Alain .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) :1738-1766
[17]  
Goldstein J.A., 1985, SEMIGROUP LINEAR OPE
[18]  
Gorbachuk V. L., 1984, BOUNDARY VALUE PROBL
[19]   Optimal regularity for a class of singular abstract parabolic equations [J].
Guidotti, Patrick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :468-486
[20]  
Haller R, 2002, MATH NACHR, V244, P110, DOI 10.1002/1522-2616(200210)244:1<110::AID-MANA110>3.0.CO