Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases

被引:34
作者
Baruch-Torres, Noe [1 ]
Brieba, Luis G. [1 ]
机构
[1] Langebio Cinvestav Sede Irapuato, Km 9-6 Libramiento Norte Carretera, Irapuato Leon 36821, Irapuato Guanaj, Mexico
关键词
BASE EXCISION-REPAIR; MITOCHONDRIAL-DNA; ESCHERICHIA-COLI; 3'-5' EXONUCLEASE; LESION-BYPASS; NUCLEOTIDE INCORPORATION; STRUCTURAL INSIGHT; ABASIC SITES; ACTIVE-SITE; COPY NUMBER;
D O I
10.1093/nar/gkx744
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genomes acquire lesions that can block the replication fork and some lesions must be bypassed to allow survival. The nuclear genome of flowering plants encodes two family-A DNA polymerases (DNAPs), the result of a duplication event, that are the sole DNAPs in plant organelles. These DNAPs, dubbed Plant Organellar Polymerases (POPs), resemble the Klenow fragment of bacterial DNAP I and are not related to metazoan and fungal mitochondrial DNAPs. Herein we report that replicative POPs from the plant model Arabidopsis thaliana (AtPolI) efficiently bypass one the most insidious DNA lesions, an apurinic/apyrimidinic (AP) site. AtPolIs accomplish lesion bypass with high catalytic efficiency during nucleotide insertion and extension. Lesion bypass depends on two unique polymerization domain insertions evolutionarily unrelated to the insertions responsible for lesion bypass by DNAP theta, an analogous lesion bypass polymerase. AtPolIs exhibit an insertion fidelity that ranks between the fidelity of replicative and lesion bypass DNAPs, moderate 3'-5' exonuclease activity and strong stranddisplacement. AtPolIs are the first known example of a family-A DNAP evolved to function in both DNA replication and lesion bypass. The lesion bypass capabilities of POPs may be required to prevent replication fork collapse in plant organelles.
引用
收藏
页码:10751 / 10763
页数:13
相关论文
共 87 条
[1]   Arabidopsis thaliana Y-family DNA polymerase η catalyses translesion synthesis and interacts functionally with PCNA2 [J].
Anderson, Heather J. ;
Vonarx, Edward J. ;
Pastushok, Landon ;
Nakagawa, Mayu ;
Katafuchi, Atsushi ;
Gruz, Petr ;
Di Rubbo, Antonio ;
Grice, Desma M. ;
Osmond, Megan J. ;
Sakamoto, Ayako N. ;
Nohmi, Takehiko ;
Xiao, Wei ;
Kunz, Bernard A. .
PLANT JOURNAL, 2008, 55 (06) :895-908
[2]  
[Anonymous], COLD SPRING HARBOR P
[3]   Low-fidelity DNA synthesis by human DNA polymerase theta [J].
Arana, Mercedes E. ;
Seki, Mineaki ;
Wood, Richard D. ;
Rogozin, Igor B. ;
Kunkel, Thomas A. .
NUCLEIC ACIDS RESEARCH, 2008, 36 (11) :3847-3856
[4]   Diversity of the Arabidopsis Mitochondrial Genome Occurs via Nuclear-Controlled Recombination Activity [J].
Arrieta-Montiel, Maria P. ;
Shedge, Vikas ;
Davila, Jaime ;
Christensen, Alan C. ;
Mackenzie, Sally A. .
GENETICS, 2009, 183 (04) :1261-1268
[5]   Molecular basis for DNA strand displacement by NHEJ repair polymerases [J].
Bartlett, Edward J. ;
Brissett, Nigel C. ;
Plocinski, Przemyslaw ;
Carlberg, Tom ;
Doherty, Aidan J. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (05) :2173-2186
[6]   Efficiency of correct nucleotide insertion governs DNA polymerase fidelity [J].
Beard, WA ;
Shock, DD ;
Vande Berg, BJ ;
Wilson, SH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (49) :47393-47398
[7]  
BEBENEK K, 1990, J BIOL CHEM, V265, P13878
[8]   STRUCTURAL BASIS FOR THE 3'-5' EXONUCLEASE ACTIVITY OF ESCHERICHIA-COLI DNA-POLYMERASE-I - A 2 METAL-ION MECHANISM [J].
BEESE, LS ;
STEITZ, TA .
EMBO JOURNAL, 1991, 10 (01) :25-33
[9]   STRUCTURE OF DNA-POLYMERASE-I KLENOW FRAGMENT BOUND TO DUPLEX DNA [J].
BEESE, LS ;
DERBYSHIRE, V ;
STEITZ, TA .
SCIENCE, 1993, 260 (5106) :352-355
[10]   DNA polymerase from temperate phage Bam35 is endowed with processive polymerization and abasic sites translesion synthesis capacity [J].
Berjon-Otero, Monica ;
Villar, Laurentino ;
de Vega, Miguel ;
Salas, Margarita ;
Redrejo-Rodriguez, Modesto .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (27) :E3476-E3484