Discreteness for the set of complex structures on a real variety

被引:0
|
作者
Ballico, E [1 ]
机构
[1] Univ Trent, Dept Math, I-38050 Povo, TN, Italy
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2003年 / 46卷 / 03期
关键词
D O I
10.4153/CMB-2003-033-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
\Let X, Y be reduced and irreducible compact complex spaces and S the set of all isomorphism classes of reduced and irreducible compact complex spaces W such that X x Y congruent to X x W. Here we prove that S is at most countable. We apply this result to show that for every reduced and irreducible compact complex space X the set S(X) of all complex reduced compact complex spaces W with X x X-sigma congruent to W x W-sigma (where A(sigma) denotes the complex conjugate of any variety A) is at most countable.
引用
收藏
页码:321 / 322
页数:2
相关论文
共 50 条