Mechanochemical synthesis of three-component metal-organic frameworks for large scale production

被引:25
|
作者
Gao, Tong [1 ]
Tang, Hui-Juan [1 ]
Zhang, Shu-Yi [1 ]
Cao, Jian-Wei [1 ]
Wu, Yi-Nong [1 ]
Chen, Juan [1 ]
Wang, Yu [1 ]
Chen, Kai-Jie [1 ]
机构
[1] Northwestern Polytech Univ, Sch Chem & Chem Engn, Xian Key Lab Funct Organ Porous Mat, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Metal-organic framework; Mechanochemical synthesis; Scalable synthesis; Rapid synthesis; Three-component MOF; ZEOLITIC IMIDAZOLATE FRAMEWORKS; ROOM-TEMPERATURE SYNTHESIS; MOF; TRANSFORMATION; EFFICIENT; ROUTES;
D O I
10.1016/j.jssc.2021.122547
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Two pillared-layer metal-organic frameworks with pcu network were synthesized by the mechanochemical reaction of three components (ZnO, 3-amino-1,2,4-triazole (Harz) or 3,5-diamino-1,2,4-triazole (Hdatz), and isophthalic acid (H(2)ipa) at room temperature with space-time yield up to 4800 kgm(-3 )day(-1). The mechanochemically-synthesized [Zn-2(atz)(2)(ipa)] (Zn-atz-ipa) and [Zn-2(datz)(2)(ipa)] (Zn-datz-ipa) exhibit the high purity and porosity with BET surface areas of 655 and 572 m(2) g(-1) respectively, which are comparable with those synthesized by the traditional solvothermal method. In C2H4/C2H6 (v/v = 1/1) breakthrough experiment, Zn-datz-ipa can preferentially adsorb C2H6 over C2H4, showing a great potential for one-step purification of C2H4. In addition, this mechanochemical method can be scaled up to 100 mmol magnitude with single-pass production up to 20.0 g.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Scale-up of metal-organic frameworks production: Engineering strategies and prospects towards sustainable manufacturing
    Paul, Twinkle
    Juma, Alaa
    Alqerem, Rami
    Karanikolos, Georgios
    Arafat, Hassan A.
    Dumee, Ludovic F.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [42] Photocatalytic metal-organic frameworks for organic transformations
    Yu, Xiao
    Wang, Le
    Cohen, Seth M.
    CRYSTENGCOMM, 2017, 19 (29) : 4126 - 4136
  • [43] Post-synthesis modification of metal-organic frameworks: synthesis, characteristics, and applications
    He, Wanjun
    Lv, Danyu
    Guan, Yongguang
    Yu, Siming
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24519 - 24550
  • [44] Microwave activation as an alternative production of metal-organic frameworks
    V. I. Isaeva
    L. M. Kustov
    Russian Chemical Bulletin, 2016, 65 : 2103 - 2114
  • [45] Air-Flow Impacting Synthesis of Metal Organic Frameworks: A Continuous, Highly Efficient, Large-Scale Mechanochemical Synthetic Method
    Guo, Zhiliang
    Zhang, Qingchun
    Cheng, Zhi
    Liu, Qangqiang
    Zuo, Jin
    Jin, Bo
    Peng, Rufang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (10) : 4037 - 4043
  • [46] Metal-Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis
    Zeng, Le
    Guo, Xiangyang
    He, Cheng
    Duan, Chunying
    ACS CATALYSIS, 2016, 6 (11): : 7935 - 7947
  • [47] Metal-organic frameworks with multicomponents in order
    Pang, Qingqing
    Tu, Binbin
    Li, Qiaowei
    COORDINATION CHEMISTRY REVIEWS, 2019, 388 : 107 - 125
  • [48] Shape engineering of metal-organic frameworks
    Valizadeh, Bardiya
    Nguyen, Tu N.
    Stylianou, Kyriakos C.
    POLYHEDRON, 2018, 145 : 1 - 15
  • [49] A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning
    Cheng, Min
    Zhang, Zhiyuan
    Wang, Shihui
    Bi, Kexin
    Hu, Kong-qiu
    Dai, Zhongde
    Dai, Yiyang
    Liu, Chong
    Zhou, Li
    Ji, Xu
    Shi, Wei-qun
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2023, 17 (12)
  • [50] Nanospace Engineering of Metal-Organic Frameworks for Heterogeneous Catalysis
    Wang, Qi
    Yang, Guoxiang
    Fu, Yangjie
    Li, Ningyi
    Hao, Derek
    Ma, Shengqian
    CHEMNANOMAT, 2022, 8 (01)