Group gradings on M3(k)

被引:6
作者
Boboc, Crina
Dascalescu, S.
机构
[1] Univ Bucharest, Fac Math, RO-010014 Bucharest 1, Romania
[2] Kuwait Univ, Dept Math, Fac Sci, Safat 13060, Kuwait
[3] Univ Bucharest, Fac Phys, Bucharest, Romania
关键词
cubic Galois extension; graded algebra; graded division ring; matrix algebra;
D O I
10.1080/00927870701351286
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe and classify all group gradings on the matrix algebra M-3(k), where k is an arbitrary field. We show that any such grading is either isomorphic to a good grading, for which all the matrix units are homogeneous elements, or reduces to a C-3-grading or to a C-3 x C-3-grading. We show that a grading which is not isomorphic to a good grading is a graded division ring. The isomorphism types of non-good C-3-gradings are in a bijective correspondence to cubic Galois extensions of k. The non-good C-3 x C-3-gradings which do not reduce to C-3-gradings are fine gradings, and their description also depends on cubic Galois extensions of k.
引用
收藏
页码:2654 / 2670
页数:17
相关论文
共 18 条
  • [1] Group gradings on matrix algebras
    Bahturin, YA
    Zaicev, MV
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (04): : 499 - 508
  • [2] Group gradings on associative algebras
    Bahturin, YA
    Sehgal, SK
    Zaicev, MV
    [J]. JOURNAL OF ALGEBRA, 2001, 241 (02) : 677 - 698
  • [3] Superalgebra structures on M2(k) in characteristic 2
    Boboc, C
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (01) : 255 - 260
  • [4] Gradings of matrix algebras by cyclic groups
    Boboc, C
    Dascalescu, S
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (11) : 5013 - 5021
  • [5] BOBOC C, 2006, B MATH SOC MATH ROUM, V49, P5
  • [6] On gradings of matrix algebras and descent theory
    Caenepeel, S
    Dascalescu, S
    Nastasescu, C
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (12) : 5901 - 5920
  • [7] Group gradings on full matrix rings
    Dascalescu, S
    Ion, B
    Nastasescu, C
    Montes, JR
    [J]. JOURNAL OF ALGEBRA, 1999, 220 (02) : 709 - 728
  • [8] DEMEYER F, 1971, SEPERABLE ALGEBRAS O, V181
  • [10] GRADED QUOTIENTS OF PATH ALGEBRAS - A LOCAL THEORY
    GREEN, EL
    MARCOS, EN
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 93 (02) : 195 - 226