New two-dimensional quantum models with shape invariance

被引:10
作者
Cannata, F. [1 ]
Ioffe, M. V. [2 ]
Nishnianidze, D. N. [2 ,3 ]
机构
[1] INFN, I-40126 Bologna, Italy
[2] St Petersburg State Univ, St Petersburg 198504, Russia
[3] Akaki Tsereteli State Univ, GE-4600 Kutaisi, Georgia
关键词
SCHRODINGER-EQUATION; SUPERSYMMETRY; SYSTEMS; SUSY; MECHANICS; CALOGERO;
D O I
10.1063/1.3553396
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-dimensional quantum models which obey the property of shape invariance are built in the framework of polynomial two-dimensional supersymmetric quantum mechanics. They are obtained using the expressions for known one-dimensional shape invariant potentials. The constructed Hamiltonians are integrable with symmetry operators of fourth order in momenta, and they are not amenable to the conventional separation of variables. (C) 2011 American Institute of Physics. [doi:10.1063/1.3553396]
引用
收藏
页数:9
相关论文
共 50 条
[31]   Entanglement negativity in two-dimensional free lattice models [J].
Eisler, Viktor ;
Zimboras, Zoltan .
PHYSICAL REVIEW B, 2016, 93 (11)
[32]   Quench dynamics in two-dimensional integrable SUSY models [J].
Cubero, Axel Cortes ;
Mussardo, Giuseppe ;
Panfil, Milosz .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[33]   Interface mapping in two-dimensional random lattice models [J].
Karsai, M. ;
d'Auriac, J-Ch Angles ;
Igloi, F. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[34]   A quantum Mermin-Wagner theorem for quantum rotators on two-dimensional graphs [J].
Kelbert, Mark ;
Suhov, Yurii .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
[35]   Quantum Criticality of Two-Dimensional Quantum Magnets with Long-Range Interactions [J].
Fey, Sebastian ;
Kapfer, Sebastian C. ;
Schmidt, Kai Phillip .
PHYSICAL REVIEW LETTERS, 2019, 122 (01)
[36]   Transport evidence for a sliding two-dimensional quantum electron solid [J].
Brussarski, Pedro ;
Li, S. ;
Kravchenko, S. V. ;
Shashkin, A. A. ;
Sarachik, M. P. .
NATURE COMMUNICATIONS, 2018, 9
[37]   Roughening Dynamics of Interfaces in the Two-Dimensional Quantum Ising Model [J].
Krinitsin, Wladislaw ;
Tausendpfund, Niklas ;
Rizzi, Matteo ;
Heyl, Markus ;
Schmitt, Markus .
PHYSICAL REVIEW LETTERS, 2025, 134 (24)
[38]   Quantum Droplets in Two-Dimensional Bose Mixtures at Finite Temperature [J].
Spada, G. ;
Pilati, S. ;
Giorgini, S. .
PHYSICAL REVIEW LETTERS, 2024, 133 (08)
[39]   Quantum theory of two-dimensional materials coupled to electromagnetic resonators [J].
Denning, Emil, V ;
Wubs, Martijn ;
Stenger, Nicolas ;
Mork, Jesper ;
Kristensen, Philip Trost .
PHYSICAL REVIEW B, 2022, 105 (08)
[40]   Nonordinary edge criticality of two-dimensional quantum critical magnets [J].
Weber, Lukas ;
Toldin, Francesco Parisen ;
Wessel, Stefan .
PHYSICAL REVIEW B, 2018, 98 (14)