Computational poroelasticity - A review

被引:136
作者
Carcione, Jose M. [1 ]
Morency, Christina [2 ]
Santos, Juan E. [3 ,4 ]
机构
[1] Ist Nazl Oceanog & Geofis Sperimentale OGS, Trieste, Italy
[2] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
[3] Univ Nacl La Plata, CONICET, Fac Ciencias Astronom & Geofis, Dept Geofis Aplicada, La Plata, Buenos Aires, Argentina
[4] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
SPECTRAL-ELEMENT METHOD; SEISMIC-WAVE PROPAGATION; PERFECTLY MATCHED LAYER; SATURATED POROUS-MEDIA; BIOT SLOW-WAVE; VELOCITY-STRESS; NUMERICAL-SIMULATION; GALERKIN METHODS; PLANE-WAVE; FLUID;
D O I
10.1190/1.3474602
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Computational physics has become an essential research and interpretation tool in many fields. Particularly in reservoir geophysics, ultrasonic and seismic modeling in porous media is used to study the properties of rocks and to characterize the seismic response of geologic formations. We provide a review of the most common numerical methods used to solve the partial differential equations describing wave propagation in fluid-saturated rocks, i.e., finite-difference, pseudospectral, and finite-element methods, including the spectral-element technique. The modeling is based on Biot-type theories of dynamic poroelasticity, which constitute a general framework to describe the physics of wave propagation. We explain the various techniques and discuss numerical implementation aspects for application to seismic modeling and rock physics, as, for instance, the role of the Biot diffusion wave as a loss mechanism and interface waves in porous media.
引用
收藏
页码:A229 / A243
页数:15
相关论文
共 132 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
ALDRIDGE DF, 2005, P 3 BIOT C POR, P253
[3]  
Allard J. F., 2009, PROPAGATION SOUND PO, DOI [10.1002/9780470747339, DOI 10.1002/9780470747339]
[4]   Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner Sandstone [J].
Arntsen, B ;
Carcione, JM .
GEOPHYSICS, 2001, 66 (03) :890-896
[5]   Mesoscopic fluid flow simulation in double-porosity rocks [J].
Ba, Jing ;
Nie, Jian-Xin ;
Cao, Hong ;
Yang, Hui-Zhu .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (04)
[6]  
Baskaran G, 2006, AIP CONF PROC, V820, P111
[7]   Finite element solution of new displacement/pres sure poroelastic models in acoustics [J].
Bermúdez, A ;
Ferrín, JL ;
Prieto, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) :1914-1932
[8]   MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1962, 33 (04) :1482-+
[9]  
BOURBIE T, 1987, ACOUSTICS POROUS MED
[10]  
Caputo M., 1969, Elasticita e dissipazione