Quantum mechanical symmetries and topological invariants

被引:28
作者
Samani, KA
Mostafazadeh, A [1 ]
机构
[1] Koc Univ, Dept Math, TR-80910 Istanbul, Turkey
[2] Inst Adv Studies Basic Sci, Zanjan, Iran
关键词
D O I
10.1016/S0550-3213(00)00692-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We give the definition and explore the algebraic structure of a class of quantum symmetries, called topological symmetries, which are generalizations of supersymmetry in the sense that they involve topological invariants similar to the Witten index. A topological symmetry (TS) is specified by an integer n > 1, which determines its grading properties, and an a-tuple of positive integers (m(1), m(2),..., m(n)). We identify the algebras of supersymmetry, p = 2 parasupersymmetry, and fractional supersymmetry of order n with those of the Z(2)-graded TS of type (1, 1), Zz-graded TS of type (2, 1), and Z(n)-graded TS of type (1, 1,...,1), respectively. We also comment on the mathematical interpretation of the topological invariants associated with the Z(n)-graded TS of type (1, 1,...,1), For n = 2, the invariant is the Witten index which can be identified with the analytic index of a Fredholm operator. For n > 2, there are n independent integer-valued invariants. These can be related to differences of the dimension of the kernels of various products of n operators satisfying certain conditions. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:467 / 492
页数:26
相关论文
共 31 条
  • [1] FRACTIONAL SUPERSYMMETRIES IN PERTURBED COSET CFTS AND INTEGRABLE SOLITON THEORY
    AHN, C
    BERNARD, D
    LECLAIR, A
    [J]. NUCLEAR PHYSICS B, 1990, 346 (2-3) : 409 - 439
  • [2] SUPERSYMMETRY AND THE ATIYAH-SINGER INDEX THEOREM
    ALVAREZGAUME, L
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (02) : 161 - 173
  • [3] A NOTE ON THE ATIYAH-SINGER INDEX THEOREM
    ALVAREZGAUME, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18): : 4177 - 4182
  • [4] PATH INTEGRAL ON THE QUANTUM PLANE
    BAULIEU, L
    FLORATOS, EG
    [J]. PHYSICS LETTERS B, 1991, 258 (1-2) : 171 - 178
  • [5] PARASTATISTICS AND SUPERSYMMETRY IN QUANTUM-MECHANICS
    BECKERS, J
    DEBERGH, N
    [J]. NUCLEAR PHYSICS B, 1990, 340 (2-3) : 767 - 776
  • [6] GENERAL DEFORMATION SCHEMES AND N = 2 SUPERSYMMETRIC QUANTUM-MECHANICS
    BONATSOS, D
    DASKALOYANNIS, C
    [J]. PHYSICS LETTERS B, 1993, 307 (1-2) : 100 - 105
  • [7] GENERALIZED SUPERSYMMETRY AND NEW TOPOLOGICAL INDEXES FOR QUANTUM GSQM-HAMILTONIANS AND ESQM-HAMILTONIANS
    BORISOV, NV
    ILINSKI, KN
    UZDIN, VM
    [J]. PHYSICS LETTERS A, 1992, 169 (06) : 422 - 426
  • [8] Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M
  • [9] Group theoretical foundations of fractional supersymmetry
    deAzcarraga, JA
    Macfarlane, AJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) : 1115 - 1127
  • [10] ON A Q-DEFORMATION OF THE SUPERSYMMETRIC WITTEN MODEL
    DEBERGH, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23): : 7219 - 7226