Least square control problems in nonreflexive spaces

被引:11
作者
Desch, W
Milota, J
Schappacher, W
机构
[1] Graz Univ, Inst Math, A-8010 Graz, Austria
[2] Charles Univ, Dept Math Anal, Prague 18600 8, Czech Republic
关键词
D O I
10.1007/s002330010024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a control problem in a Banach space with a bounded observer, but an unbounded controller which takes values in the extrapolated Favard class. A least square regulator problem can be formulated if the observer and the admissible controls take values in Hilbert spaces. We prove that for this type of LQR-problem the value function is given by a Riccati operator, and that a bounded state feedback based on the Riccati operator yields the optimal control.
引用
收藏
页码:337 / 357
页数:21
相关论文
共 23 条
[2]  
Butzer P. L., 1967, SEMIGROUPS OPERATORS
[3]  
Curtain RF, 1995, An Introduction to Infinite-Dimensional Linear Systems Theory
[4]   MAXIMAL REGULARITY FOR EVOLUTION-EQUATIONS BY INTERPOLATION AND EXTRAPOLATION [J].
DAPRATO, G ;
GRISVARD, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 58 (02) :107-124
[5]  
DAPRATO G, 1993, LECT NOTES PURE APPL, V155, P91
[6]  
DESCH GW, 1989, LECTURE NOTES PURE A, V116, P125
[7]  
DESCH W, 1989, HOUSTON J MATH, V15, P527
[8]  
GREINER G, 1987, HOUSTON J MATH, V13, P213
[9]  
Iannelli M., 1995, MATH THEORY AGE STRU
[10]   INTEGRATED SEMIGROUPS [J].
KELLERMAN, H ;
HIEBER, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 84 (01) :160-180