Predicting Response to Systemic Chemotherapy for Advanced Gastric Cancer Using Pre-Treatment Dual-Energy CT Radiomics: A Pilot Study

被引:17
作者
Liu, Yi-yang [1 ,2 ]
Zhang, Huan [3 ]
Wang, Lan [3 ]
Lin, Shu-shen [4 ]
Lu, Hao [1 ,2 ]
Liang, He-jun [5 ]
Liang, Pan [1 ,2 ]
Li, Jun [1 ]
Lv, Pei-jie [1 ]
Gao, Jian-bo [1 ,2 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Radiol, Zhengzhou, Peoples R China
[2] Henan Key Lab Imaging Diag & Treatment Digest Sys, Zhengzhou, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Radiol, Rujin Hosp, Sch Med, Shanghai, Peoples R China
[4] Siemens Healthineers Ltd, Dept DI CT Collaborat, Shanghai, Peoples R China
[5] Zhengzhou Univ, Affiliated Hosp 1, Dept Oncol, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
dual-energy CT; radiomics; response prediction; systemic chemotherapy; gastric cancer; IODINE QUANTIFICATION; TEXTURE ANALYSIS; RENAL LESIONS; NOMOGRAM; IMAGES; CLASSIFICATION; ATTENUATION; THERAPY; TUMORS; PLUS;
D O I
10.3389/fonc.2021.740732
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective To build and assess a pre-treatment dual-energy CT-based clinical-radiomics nomogram for the individualized prediction of clinical response to systemic chemotherapy in advanced gastric cancer (AGC). Methods A total of 69 pathologically confirmed AGC patients who underwent dual-energy CT before systemic chemotherapy were enrolled from two centers in this retrospective study. Treatment response was determined with follow-up CT according to the RECIST standard. Quantitative radiomics metrics of the primary lesion were extracted from three sets of monochromatic images (40, 70, and 100 keV) at venous phase. Univariate analysis and least absolute shrinkage and selection operator (LASSO) were used to select the most relevant radiomics features. Multivariable logistic regression was performed to establish a clinical model, three monochromatic radiomics models, and a combined multi-energy model. ROC analysis and DeLong test were used to evaluate and compare the predictive performance among models. A clinical-radiomics nomogram was developed; moreover, its discrimination, calibration, and clinical usefulness were assessed. Result Among the included patients, 24 responded to the systemic chemotherapy. Clinical stage and the iodine concentration (IC) of the tumor were significant clinical predictors of chemotherapy response (all p < 0.05). The multi-energy radiomics model showed a higher predictive capability (AUC = 0.914) than two monochromatic radiomics models and the clinical model (AUC: 40 keV = 0.747, 70 keV = 0.793, clinical = 0.775); however, the predictive accuracy of the 100-keV model (AUC: 0.881) was not statistically different (p = 0.221). The clinical-radiomics nomogram integrating the multi-energy radiomics signature with IC value and clinical stage showed good calibration and discrimination with an AUC of 0.934. Decision curve analysis proved the clinical usefulness of the nomogram and multi-energy radiomics model. Conclusion The pre-treatment DECT-based clinical-radiomics nomogram showed good performance in predicting clinical response to systemic chemotherapy in AGC, which may contribute to clinical decision-making and improving patient survival.
引用
收藏
页数:12
相关论文
共 58 条
[11]   Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J].
Dong, D. ;
Tang, L. ;
Li, Z. -Y ;
Fang, M-J ;
Gao, J-B ;
Shan, X-H ;
Ying, X-J ;
Sun, Y-S ;
Fu, J. ;
Wang, X-X ;
Li, L-M ;
Li, Z-H ;
Zhang, D-F ;
Zhang, Y. ;
Li, Z-M ;
Shan, F. ;
Bu, Z-D ;
Tian, J. ;
Ji, J-F .
ANNALS OF ONCOLOGY, 2019, 30 (03) :431-438
[12]   Development and validation of a novel MR imaging predictor of response to induction chemotherapy in locoregionally advanced nasopharyngeal cancer: a randomized controlled trial substudy (NCT01245959) [J].
Dong, Di ;
Zhang, Fan ;
Zhong, Lian-Zhen ;
Fang, Meng-Jie ;
Huang, Cheng-Long ;
Yao, Ji-Jin ;
Sun, Ying ;
Tian, Jie ;
Ma, Jun ;
Tang, Ling-Long .
BMC MEDICINE, 2019, 17 (01)
[13]   Nanotargeted agents: an emerging therapeutic strategy for breast cancer [J].
Du, Manling ;
Ouyang, Yong ;
Meng, Fansu ;
Ma, Qianqian ;
Liu, Hui ;
Zhuang, Yong ;
Pang, Mujuan ;
Cai, Tiange ;
Cai, Yu .
NANOMEDICINE, 2019, 14 (13) :1771-1786
[14]   New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) [J].
Eisenhauer, E. A. ;
Therasse, P. ;
Bogaerts, J. ;
Schwartz, L. H. ;
Sargent, D. ;
Ford, R. ;
Dancey, J. ;
Arbuck, S. ;
Gwyther, S. ;
Mooney, M. ;
Rubinstein, L. ;
Shankar, L. ;
Dodd, L. ;
Kaplan, R. ;
Lacombe, D. ;
Verweij, J. .
EUROPEAN JOURNAL OF CANCER, 2009, 45 (02) :228-247
[15]   Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): a double-blind, randomised, placebo-controlled, phase 3 trial [J].
Fuchs, Charles S. ;
Shitara, Kohei ;
Di Bartolomeo, Maria ;
Lonardi, Sara ;
Al-Batran, Salah-Eddin ;
Van Cutsem, Eric ;
Ilson, David H. ;
Alsina, Maria ;
Chau, Ian ;
Lacy, Jill ;
Ducreux, Michel ;
Mendez, Guillermo Ariel ;
Alavez, Alejandro Molina ;
Takahari, Daisuke ;
Mansoor, Wasat ;
Enzinger, Peter C. ;
Gorbounova, Vera ;
Wainberg, Zev A. ;
Hegewisch-Becker, Susanna ;
Ferry, David ;
Lin, Ji ;
Carlesi, Roberto ;
Das, Mayukh ;
Shah, Manish A. ;
Luft, Alexander, V ;
Karaseva, Nina A. ;
Kowalyszyn, Rubn Dario ;
Hernandez, Carlos Alberto ;
Csoszi, Tibor ;
De Vita, Ferdinando ;
Pfeiffer, Per ;
Sugimoto, Naotoshi ;
Kocsis, Judit ;
Csilla, Andrs ;
Bodoky, Gyorgy ;
Jaliffe, Georgina Garnica ;
Protsenko, Svetlana ;
Madi, Ayman ;
Wojcik, Elzbieta ;
Brenner, Baruch ;
Folprecht, Gunnar ;
Sarosiek, Tomasz ;
Peltola, Katriina Johanna ;
Bono, Peter ;
Ayala, Hubert ;
Aprile, Giuseppe ;
Gerardo, Cardellino Giovanni ;
Melendez, Fidel David Huitzil ;
Falcone, Alfredo ;
Di Costanzo, Francesco .
LANCET ONCOLOGY, 2019, 20 (03) :420-435
[16]   Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing [J].
Gerlinger, Marco ;
Rowan, Andrew J. ;
Horswell, Stuart ;
Larkin, James ;
Endesfelder, David ;
Gronroos, Eva ;
Martinez, Pierre ;
Matthews, Nicholas ;
Stewart, Aengus ;
Tarpey, Patrick ;
Varela, Ignacio ;
Phillimore, Benjamin ;
Begum, Sharmin ;
McDonald, Neil Q. ;
Butler, Adam ;
Jones, David ;
Raine, Keiran ;
Latimer, Calli ;
Santos, Claudio R. ;
Nohadani, Mahrokh ;
Eklund, Aron C. ;
Spencer-Dene, Bradley ;
Clark, Graham ;
Pickering, Lisa ;
Stamp, Gordon ;
Gore, Martin ;
Szallasi, Zoltan ;
Downward, Julian ;
Futreal, P. Andrew ;
Swanton, Charles .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (10) :883-892
[17]   Randomized comparison between chemotherapy plus best supportive care with best supportive care in advanced gastric cancer [J].
Glimelius, B ;
Ekstrom, K ;
Hoffman, K ;
Graf, W ;
Sjoden, PO ;
Haglund, U ;
Svensson, C ;
Enander, LK ;
Linne, T ;
Sellstrom, H ;
Heuman, R .
ANNALS OF ONCOLOGY, 1997, 8 (02) :163-168
[18]   Effect of radiomics from different virtual monochromatic images in dual-energy spectral CT on the WHO/ISUP classification of clear cell renal cell carcinoma [J].
Han, D. ;
Yu, Y. ;
He, T. ;
Yu, N. ;
Dang, S. ;
Wu, H. ;
Ren, J. ;
Duan, X. .
CLINICAL RADIOLOGY, 2021, 76 (08) :627.e23-627.e29
[19]   Semiautomatic Segmentation and Radiomics for Dual-Energy CT: A Pilot Study to Differentiate Benign and Malignant Hepatic Lesions [J].
Homayounieh, Fatemeh ;
Singh, Ramandeep ;
Nitiwarangkul, Chayanin ;
Lades, Felix ;
Schmidt, Bernhard ;
Sedlmair, Martin ;
Saini, Sanjay ;
Kalra, Mannudeep K. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (02) :398-405
[20]   Identifying early gastric cancer under magnifying narrow-band images with deep learning: a multicenter study [J].
Hu, Hao ;
Gong, Lixin ;
Dong, Di ;
Zhu, Liang ;
Wang, Min ;
He, Jie ;
Shu, Lei ;
Cai, Yiling ;
Cai, Shilun ;
Su, Wei ;
Zhong, Yunshi ;
Li, Cong ;
Zhu, Yongbei ;
Fang, Mengjie ;
Zhong, Lianzhen ;
Yang, Xin ;
Zhou, Pinghong ;
Tian, Jie .
GASTROINTESTINAL ENDOSCOPY, 2021, 93 (06) :1333-+