Elliptical vortex solutions, integrable Ermakov structure, and Lax pair formulation of the compressible Euler equations

被引:6
作者
An, Hongli [1 ]
Fan, Engui [2 ,3 ]
Zhu, Haixing [4 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Jiangsu, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Nanjing Forestry Univ, Coll Econ & Management, Nanjing 210037, Jiangsu, Peoples R China
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 01期
基金
中国国家自然科学基金;
关键词
NONLINEAR SUPERPOSITION; SYSTEMS; TRANSFORMATIONS; AMPLITUDE; LIE;
D O I
10.1103/PhysRevE.91.013204
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The 2+1-dimensional compressible Euler equations are investigated here. A power-type elliptic vortex ansatz is introduced and thereby reduction obtains to an eight-dimensional nonlinear dynamical system. The latter is shown to have an underlying integral Ermakov-Ray-Reid structure of Hamiltonian type. It is of interest to notice that such an integrable Ermakov structure exists not only in the density representations but also in the velocity components. A class of typical elliptical vortex solutions termed pulsrodons corresponding to warm-core eddy theory is isolated and its behavior is simulated. In addition, a Lax pair formulation is constructed and the connection with stationary nonlinear cubic Schrodinger equations is established.
引用
收藏
页数:9
相关论文
共 54 条
[1]  
Ablowitz M. J., 1991, LONDON MATHEMATICAL, V149
[2]   The Cartesian Vector Solutions for the N-Dimensional Compressible Euler Equations [J].
An, Hongli ;
Fan, Engui ;
Yuen, Manwai .
STUDIES IN APPLIED MATHEMATICS, 2015, 134 (01) :101-119
[3]   A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction [J].
An, Hongli ;
Rogers, Colin .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[4]  
[Anonymous], 1945, Hydrodynamics
[6]   ON LINEARIZATION OF THE ERMAKOV SYSTEM [J].
ATHORNE, C ;
ROGERS, C ;
RAMGULAM, U ;
OSBALDESTIN, A .
PHYSICS LETTERS A, 1990, 143 (4-5) :207-212
[7]   Relativistic formalism to compute quasiequilibrium configurations of nonsynchronized neutron star binaries [J].
Bonazzola, S ;
Gourgoulhon, E ;
Marck, JA .
PHYSICAL REVIEW D, 1997, 56 (12) :7740-7749
[8]   Invariants and geometric structures in nonlinear Hamiltonian magnetic reconnection [J].
Cafaro, E ;
Grasso, D ;
Pegoraro, F ;
Porcelli, F ;
Saluzzi, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (20) :4430-4433
[9]   Modeling mesoscale eddies [J].
Canuto, VM ;
Dubovikov, MS .
OCEAN MODELLING, 2005, 8 (1-2) :1-30
[10]   Recent Applications of the Theory of Lie Systems in Ermakov Systems [J].
Carinena, Jose F. ;
De Lucas, Javier ;
Ranada, Manuel F. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4