Plasmonics of multifaceted metallic nanoparticles, field enhancement, and TERS

被引:10
|
作者
Noguez, Cecilia [1 ]
Villagomez, Carlos J. [1 ]
Gonzalez, Ana L. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico
[2] Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2015年 / 252卷 / 01期
关键词
field enhancement; metallic nanoparticles; plasmonics; SERS; surface plasmon resonance; TERS; ATOMIC-FORCE MICROSCOPY; RESOLUTION ELECTRON-MICROSCOPY; SCANNING-TUNNELING-MICROSCOPY; SURFACTANT-DIRECTED SYNTHESIS; RAMAN-SCATTERING SERS; GOLD NANORODS; OPTICAL-PROPERTIES; SINGLE-MOLECULE; ASPECT-RATIO; SILVER NANOPARTICLES;
D O I
10.1002/pssb.201350416
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Metal nanoparticles (NPs) exhibit remarkable physical and chemical properties that are morphology dependent. Particular interest has been paid to the optical response of NPs because their surface plasmon excitations strongly couple with external light. At the nanoscale, this physical property translates to new phenomena because these surface plasmon resonances are localized and consequently they enhance the near electromagnetic field. The latter can be controlled for increasing significantly the sensitivity of optical spectroscopies. In this feature article, we discuss surface plasmons in metal NPs, their localization, the electromagnetic field enhancement of such plasmons, and their application in the so-called tip-enhanced Raman spectroscopy (TERS). [GRAPHICS] Tip-enhanced Raman spectroscopy model using plasmonics. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:56 / 71
页数:16
相关论文
共 50 条
  • [21] Near-field plasmonics of gold nanoparticles in dielectric media
    Yuksel, Anil
    Cullinan, Michael
    Yu, Edward T.
    Murthy, Jayathi
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 254
  • [22] Significant light absorption enhancement in silicon thin film tandem solar cells with metallic nanoparticles
    Cai, Boyuan
    Li, Xiangping
    Zhang, Yinan
    Jia, Baohua
    NANOTECHNOLOGY, 2016, 27 (19)
  • [23] Q-factor of plasmonic resonances and field enhancement in the vicinity of spherical metallic nanoparticles
    Korotun, A. V.
    Moroz, H. V.
    Korolkov, R. Yu.
    FUNCTIONAL MATERIALS, 2024, 31 (01): : 119 - 127
  • [24] Comparison of Octahedral and Spherical Nanoparticles for Plasmonics
    Trendafilov, Simeon
    Allen, Monica
    Allen, Jeffery
    Lin, Zhiqun
    IEEE PHOTONICS JOURNAL, 2019, 11 (03):
  • [25] Field enhancement in subnanometer metallic gaps
    Garcia-Martin, A.
    Ward, D. R.
    Natelson, D.
    Cuevas, J. C.
    PHYSICAL REVIEW B, 2011, 83 (19):
  • [26] Design Approach of Metallic Nanoparticles Array for Biosensing: Calculation of Enhanced Electronic-Field
    Zhu, Shaoli
    Fu, Yongqi
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (10) : 1894 - 1899
  • [27] Local field enhancement of nano-structured metallic target irradiated by polarized laser beam
    Nikbakht, M.
    Mahdieh, M. H.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2012, 7
  • [28] Plasmonics of Supported Nanoparticles Reveals Adhesion at the Nanoscale: Implications for Metals on Dielectrics
    Lazzari, Remi
    Jupille, Jacques
    Cavallotti, Remi
    Chernysheva, Ekaterina
    Castilla, Sebastian
    Messaykeh, Maya
    Herault, Quentin
    Gozhyk, Iryna
    Meriggio, Elisa
    ACS APPLIED NANO MATERIALS, 2020, 3 (12): : 12157 - 12168
  • [29] Structure Metallic Surface for Terahertz Plasmonics
    Manikandan, E.
    Princy, S. Sasi
    Sreeja, B. S.
    Radha, S.
    PLASMONICS, 2019, 14 (06) : 1311 - 1319
  • [30] Structure Metallic Surface for Terahertz Plasmonics
    E. Manikandan
    S. Sasi Princy
    B. S. Sreeja
    S. Radha
    Plasmonics, 2019, 14 : 1311 - 1319