Interface contributions to topological entanglement in abelian Chern-Simons theory

被引:34
作者
Fliss, Jackson R. [1 ]
Wen, Xueda [1 ,2 ]
Parrikar, Onkar [3 ]
Hsieh, Chang-Tse [1 ]
Han, Bo [1 ]
Hughes, Taylor L. [1 ]
Leigh, Robert G. [1 ]
机构
[1] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ Penn, David Rittenhouse Lab, 209 S 33rd St, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Chern-Simons Theories; Topological Field Theories; Gauge Symmetry; Topological States of Matter; GAUGE-THEORIES; BOUNDARY;
D O I
10.1007/JHEP09(2017)056
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the entanglement entropy between (possibly distinct) topological phases across an interface using an Abelian Chern-Simons description with topological boundary conditions (TBCs) at the interface. From a microscopic point of view, these TBCs correspond to turning on particular gapping interactions between the edge modes across the interface. However, in studying entanglement in the continuum Chern-Simons description, we must confront the problem of non-factorization of the Hilbert space, which is a standard property of gauge theories. We carefully de fine the entanglement entropy by using an extended Hilbert space construction directly in the continuum theory. We show how a given TBC isolates a corresponding gauge invariant state in the extended Hilbert space, and hence compute the resulting entanglement entropy. We find that the sub-leading correction to the area law remains universal, but depends on the choice of topological boundary conditions. This agrees with the microscopic calculation of [1]. Additionally, we provide a replica path integral calculation for the entropy. In the case when the topological phases across the interface are taken to be identical, our construction gives a novel explanation of the equivalence between the left-right entanglement of (1+1) d Ishibashi states and the spatial entanglement of (2+1) d topological phases.
引用
收藏
页数:34
相关论文
共 53 条
[21]   REMARKS ON THE CANONICAL QUANTIZATION OF THE CHERN-SIMONS-WITTEN THEORY [J].
ELITZUR, S ;
MOORE, G ;
SCHWIMMER, A ;
SEIBERG, N .
NUCLEAR PHYSICS B, 1989, 326 (01) :108-134
[22]   Antisymmetric tensor fields on spheres: Functional determinants and non-local counterterms [J].
Elizalde, E ;
Lygren, M ;
Vassilevich, DV .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) :3105-3117
[23]   Bulk emergence and the RG flow of entanglement entropy [J].
Faulkner, Thomas .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05)
[24]   Topological defects for the free boson CFT [J].
Fuchs, Jurgen ;
Gaberdiel, Matthias R. ;
Runkel, Ingo ;
Schweigert, Christoph .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (37) :11403-11440
[25]  
Gaberdiel MR, 2002, FORTSCHR PHYS, V50, P783, DOI 10.1002/1521-3978(200209)50:8/9<783::AID-PROP783>3.0.CO
[26]  
2-J
[27]   On the entanglement entropy for gauge theories [J].
Ghosh, Sudip ;
Soni, Ronak M. ;
Trivedi, Sandip P. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09)
[28]   A note on entanglement entropy for topological interfaces in RCFTs [J].
Gutperle, Michael ;
Miller, John D. .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04)
[29]   STABILITY OF CHIRAL LUTTINGER LIQUIDS AND ABELIAN QUANTUM HALL STATES [J].
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1995, 74 (11) :2090-2093
[30]   Entanglement entropy and anomaly inflow [J].
Hughes, Taylor L. ;
Leigh, Robert G. ;
Parrikar, Onkar ;
Ramamurthy, Srinidhi T. .
PHYSICAL REVIEW D, 2016, 93 (06)