Interface contributions to topological entanglement in abelian Chern-Simons theory

被引:34
作者
Fliss, Jackson R. [1 ]
Wen, Xueda [1 ,2 ]
Parrikar, Onkar [3 ]
Hsieh, Chang-Tse [1 ]
Han, Bo [1 ]
Hughes, Taylor L. [1 ]
Leigh, Robert G. [1 ]
机构
[1] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Univ Penn, David Rittenhouse Lab, 209 S 33rd St, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Chern-Simons Theories; Topological Field Theories; Gauge Symmetry; Topological States of Matter; GAUGE-THEORIES; BOUNDARY;
D O I
10.1007/JHEP09(2017)056
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the entanglement entropy between (possibly distinct) topological phases across an interface using an Abelian Chern-Simons description with topological boundary conditions (TBCs) at the interface. From a microscopic point of view, these TBCs correspond to turning on particular gapping interactions between the edge modes across the interface. However, in studying entanglement in the continuum Chern-Simons description, we must confront the problem of non-factorization of the Hilbert space, which is a standard property of gauge theories. We carefully de fine the entanglement entropy by using an extended Hilbert space construction directly in the continuum theory. We show how a given TBC isolates a corresponding gauge invariant state in the extended Hilbert space, and hence compute the resulting entanglement entropy. We find that the sub-leading correction to the area law remains universal, but depends on the choice of topological boundary conditions. This agrees with the microscopic calculation of [1]. Additionally, we provide a replica path integral calculation for the entropy. In the case when the topological phases across the interface are taken to be identical, our construction gives a novel explanation of the equivalence between the left-right entanglement of (1+1) d Ishibashi states and the spatial entanglement of (2+1) d topological phases.
引用
收藏
页数:34
相关论文
共 53 条
[1]  
Agarwal A., ARXIV170100014
[2]   Boundary conditions and unitarity: the Maxwell-Chern-Simons system in AdS3/CFT2 [J].
Andrade, Tomas ;
Jottar, Juan I. ;
Leigh, Robert G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05)
[3]  
[Anonymous], ARXIV13077480
[4]   TOPOLOGICAL GAUGE-THEORIES OF ANTISYMMETRIC TENSOR-FIELDS [J].
BLAU, M ;
THOMPSON, G .
ANNALS OF PHYSICS, 1991, 205 (01) :130-172
[5]   Entanglement and topological interfaces [J].
Brehm, E. ;
Brunner, I. ;
Jaud, D. ;
Schmidt-Colinet, C. .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2016, 64 (6-7) :516-535
[6]   Entanglement entropy in gauge theories and the holographic principle for electric strings [J].
Buividovich, P. V. ;
Polikarpov, M. I. .
PHYSICS LETTERS B, 2008, 670 (02) :141-145
[7]   Interactions along an entanglement cut in 2+1D Abelian topological phases [J].
Cano, Jennifer ;
Hughes, Taylor L. ;
Mulligan, Michael .
PHYSICAL REVIEW B, 2015, 92 (07)
[8]  
Cardy J.L., hep-th/0411189
[9]   BOUNDARY-CONDITIONS, FUSION RULES AND THE VERLINDE FORMULA [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1989, 324 (03) :581-596
[10]   Entanglement entropy for a Maxwell field: Numerical calculation on a two-dimensional lattice [J].
Casini, Horacio ;
Huerta, Marina .
PHYSICAL REVIEW D, 2014, 90 (10)