Deep learning for automatic segmentation of thigh and leg muscles

被引:27
|
作者
Agosti, Abramo [1 ,2 ]
Shaqiri, Enea [1 ]
Paoletti, Matteo [1 ]
Solazzo, Francesca [1 ,3 ]
Bergsland, Niels [4 ,5 ]
Colelli, Giulia [1 ,2 ,6 ]
Savini, Giovanni [1 ,7 ]
Muzic, Shaun I. [8 ]
Santini, Francesco [9 ,10 ]
Deligianni, Xeni [9 ,10 ]
Diamanti, Luca [11 ]
Monforte, Mauro [12 ]
Tasca, Giorgio [12 ]
Ricci, Enzo [12 ]
Bastianello, Stefano [1 ,13 ]
Pichiecchio, Anna [1 ,13 ]
机构
[1] IRCCS Mondino Fdn, Adv Imaging & Radi Ctr, Neuroradiol Dept, Pavia, Italy
[2] Univ Pavia, Dipartimento Matemat, Pavia, Italy
[3] Univ Insubria, Sch Specializat Clin Pharmacol & Toxicol, Ctr Res Med Pharmacol, Sch Med, Varese, Italy
[4] Jacobs Sch Med & Biomed Sci, Buffalo Neuroimaging Anal Ctr, Dept Neurol, Buffalo, NY USA
[5] SUNY Buffalo, Buffalo, NY USA
[6] INFN, Pavia Grp, Pavia, Italy
[7] IRCCS Humanitas Res Hosp, Dept Neuroradiol, Milan, Italy
[8] Univ Pavia, Pavia, Italy
[9] Univ Hosp Basel, Dept Radiol, Div Radiol Phys, Basel, Switzerland
[10] Univ Basel, Dept Biomed Engn, Allschwil, Switzerland
[11] IRCCS Mondino Fdn, Neurooncol Unit, Pavia, Italy
[12] Fdn Policlin Univ A Gemelli IRCCS, Unita Operat Complessa Neurol, Rome, Italy
[13] Univ Pavia, Dept Brain & Behav Sci, Pavia, Italy
关键词
Deep learning; Muscle segmentation; Magnetic resonance imaging; INDIVIDUAL MUSCLES; FAT; MRI;
D O I
10.1007/s10334-021-00967-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective In this study we address the automatic segmentation of selected muscles of the thigh and leg through a supervised deep learning approach. Material and methods The application of quantitative imaging in neuromuscular diseases requires the availability of regions of interest (ROI) drawn on muscles to extract quantitative parameters. Up to now, manual drawing of ROIs has been considered the gold standard in clinical studies, with no clear and universally accepted standardized procedure for segmentation. Several automatic methods, based mainly on machine learning and deep learning algorithms, have recently been proposed to discriminate between skeletal muscle, bone, subcutaneous and intermuscular adipose tissue. We develop a supervised deep learning approach based on a unified framework for ROI segmentation. Results The proposed network generates segmentation maps with high accuracy, consisting in Dice Scores ranging from 0.89 to 0.95, with respect to "ground truth" manually segmented labelled images, also showing high average performance in both mild and severe cases of disease involvement (i.e. entity of fatty replacement). Discussion The presented results are promising and potentially translatable to different skeletal muscle groups and other MRI sequences with different contrast and resolution.
引用
收藏
页码:467 / 483
页数:17
相关论文
共 50 条
  • [31] Group I projections from intrinsic foot muscles to motoneurones of leg and thigh muscles in humans
    Marque, P
    Nicolas, G
    Marchand-Pauvert, V
    Gautier, J
    Simonetta-Moreau, M
    Pierrot-Deseilligny, E
    JOURNAL OF PHYSIOLOGY-LONDON, 2001, 536 (01): : 313 - 327
  • [32] Deep learning method for segmentation of rotator cuff muscles on MR images
    Giovanna Medina
    Colleen G. Buckless
    Eamon Thomasson
    Luke S. Oh
    Martin Torriani
    Skeletal Radiology, 2021, 50 : 683 - 692
  • [33] Deep learning method for segmentation of rotator cuff muscles on MR images
    Medina, Giovanna
    Buckless, Colleen G.
    Thomasson, Eamon
    Oh, Luke S.
    Torriani, Martin
    SKELETAL RADIOLOGY, 2021, 50 (04) : 683 - 692
  • [34] Deep-learning-based automatic segmentation and classification for craniopharyngiomas
    Yan, Xiaorong
    Lin, Bingquan
    Fu, Jun
    Li, Shuo
    Wang, He
    Fan, Wenjian
    Fan, Yanghua
    Feng, Ming
    Wang, Renzhi
    Fan, Jun
    Qi, Songtao
    Jiang, Changzhen
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [35] Automatic Ultrasound Vessel Segmentation with Deep Spatiotemporal Context Learning
    Jiang, Baichuan
    Chen, Alvin
    Bharat, Shyam
    Zheng, Mingxin
    SIMPLIFYING MEDICAL ULTRASOUND, 2021, 12967 : 3 - 13
  • [36] Automatic Segmentation of Images with Superpixel Similarity Combined with Deep Learning
    Mu, Xiaofang
    Qi, Hui
    Li, Xiaobin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (02) : 884 - 899
  • [37] Deep Learning as a Tool for Automatic Segmentation of Corneal Endothelium Images
    Nurzynska, Karolina
    SYMMETRY-BASEL, 2018, 10 (03):
  • [38] Automatic Mosaic Digitalization: a Deep Learning approach to tessera segmentation
    Felicetti, Andrea
    Albiero, Alessandra
    Gabrielli, Roberto
    Pierdicca, Roberto
    Paolanti, Marina
    Zingaretti, Primo
    Malinverni, Eva Savina
    2018 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR ARCHAEOLOGY AND CULTURAL HERITAGE (METROARCHAEO 2018), 2018, : 132 - 136
  • [39] Automatic Prostate Segmentation using Deep Learning and MR Images
    Yuan, Y.
    Qin, W.
    Buyyounouski, M. K.
    Hancock, S. L.
    Bagshaw, H. P.
    Han, B.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : E379 - E379
  • [40] DEEP LEARNING BASED AUTOMATIC SEGMENTATION OF CARDIAC COMPUTED TOMOGRAPHY
    Singh, Gurpreet
    Alaref, Subhi
    Maliakal, Gabriel
    Pandey, Mohit
    van Rosendael, Alexander
    Lee, Benjamin
    Wang, Jing
    Xu, Zhouran
    Min, James
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 1643 - 1643