Deep learning for automatic segmentation of thigh and leg muscles

被引:27
|
作者
Agosti, Abramo [1 ,2 ]
Shaqiri, Enea [1 ]
Paoletti, Matteo [1 ]
Solazzo, Francesca [1 ,3 ]
Bergsland, Niels [4 ,5 ]
Colelli, Giulia [1 ,2 ,6 ]
Savini, Giovanni [1 ,7 ]
Muzic, Shaun I. [8 ]
Santini, Francesco [9 ,10 ]
Deligianni, Xeni [9 ,10 ]
Diamanti, Luca [11 ]
Monforte, Mauro [12 ]
Tasca, Giorgio [12 ]
Ricci, Enzo [12 ]
Bastianello, Stefano [1 ,13 ]
Pichiecchio, Anna [1 ,13 ]
机构
[1] IRCCS Mondino Fdn, Adv Imaging & Radi Ctr, Neuroradiol Dept, Pavia, Italy
[2] Univ Pavia, Dipartimento Matemat, Pavia, Italy
[3] Univ Insubria, Sch Specializat Clin Pharmacol & Toxicol, Ctr Res Med Pharmacol, Sch Med, Varese, Italy
[4] Jacobs Sch Med & Biomed Sci, Buffalo Neuroimaging Anal Ctr, Dept Neurol, Buffalo, NY USA
[5] SUNY Buffalo, Buffalo, NY USA
[6] INFN, Pavia Grp, Pavia, Italy
[7] IRCCS Humanitas Res Hosp, Dept Neuroradiol, Milan, Italy
[8] Univ Pavia, Pavia, Italy
[9] Univ Hosp Basel, Dept Radiol, Div Radiol Phys, Basel, Switzerland
[10] Univ Basel, Dept Biomed Engn, Allschwil, Switzerland
[11] IRCCS Mondino Fdn, Neurooncol Unit, Pavia, Italy
[12] Fdn Policlin Univ A Gemelli IRCCS, Unita Operat Complessa Neurol, Rome, Italy
[13] Univ Pavia, Dept Brain & Behav Sci, Pavia, Italy
关键词
Deep learning; Muscle segmentation; Magnetic resonance imaging; INDIVIDUAL MUSCLES; FAT; MRI;
D O I
10.1007/s10334-021-00967-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective In this study we address the automatic segmentation of selected muscles of the thigh and leg through a supervised deep learning approach. Material and methods The application of quantitative imaging in neuromuscular diseases requires the availability of regions of interest (ROI) drawn on muscles to extract quantitative parameters. Up to now, manual drawing of ROIs has been considered the gold standard in clinical studies, with no clear and universally accepted standardized procedure for segmentation. Several automatic methods, based mainly on machine learning and deep learning algorithms, have recently been proposed to discriminate between skeletal muscle, bone, subcutaneous and intermuscular adipose tissue. We develop a supervised deep learning approach based on a unified framework for ROI segmentation. Results The proposed network generates segmentation maps with high accuracy, consisting in Dice Scores ranging from 0.89 to 0.95, with respect to "ground truth" manually segmented labelled images, also showing high average performance in both mild and severe cases of disease involvement (i.e. entity of fatty replacement). Discussion The presented results are promising and potentially translatable to different skeletal muscle groups and other MRI sequences with different contrast and resolution.
引用
收藏
页码:467 / 483
页数:17
相关论文
共 50 条
  • [21] Automatic segmentation of thigh magnetic resonance images
    Urricelqui, Lorena
    Malanda, Armando
    Villanueva, Arantxa
    World Academy of Science, Engineering and Technology, 2009, 58 : 979 - 985
  • [22] Deep reinforcement learning architectures for automatic organ segmentation
    Ogrean, Valentin
    Brad, Remus
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
  • [23] Automatic segmentation of leukocytes images using deep learning
    Backes, Andre Ricardo
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4259 - 4266
  • [24] AUTOMATIC PULMONARY LOBE SEGMENTATION USING DEEP LEARNING
    Tang, Hao
    Zhang, Chupeng
    Xie, Xiaohui
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1225 - 1228
  • [25] Automatic Stranger Remover in Photo by Deep Learning Segmentation
    Olowolayemo, Akeem
    Alanazi, Saleh
    Kang, Lim Yoong
    Ying, Doreen Teoh Sim
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS PROCESSING (ICIGP 2018), 2018, : 115 - 120
  • [26] Automatic segmentation of thigh magnetic resonance images
    Urricelqui, Lorena
    Malanda, Armando
    Villanueva, Arantxa
    World Academy of Science, Engineering and Technology, 2009, 34 : 979 - 985
  • [27] Automatic segmentation of thigh magnetic resonance images
    Urricelqui, Lorena
    Malanda, Armando
    Villanueva, Arantxa
    World Academy of Science, Engineering and Technology, 2009, 34 : 531 - 537
  • [28] ELECTROMYOGRAPHY OF MUSCLES OF POSTURE - LEG AND THIGH MUSCLES IN WOMEN, INCLUDING THE EFFECTS OF HIGH HEELS
    JOSEPH, J
    NIGHTINGALE, A
    JOURNAL OF PHYSIOLOGY-LONDON, 1956, 132 (03): : 465 - 468
  • [29] DeepACSA: Automatic Segmentation of Cross-Sectional Area in Ultrasound Images of Lower Limb Muscles Using Deep Learning
    Ritsche, P. A. U. L.
    Wirth, P. H. I. L. I. P. P.
    Cronin, N. E. I. L. J.
    Sarto, F. A. B. I. O.
    Narici, M. A. R. C. O. V.
    Faude, O. L. I. V. E. R.
    Franchi, M. A. R. T. I. N. O. V.
    MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2022, 54 (12) : 2188 - 2195
  • [30] AN ATLAS BASED AUTOMATIC SEGMENTATION OF THE HUMAN THIGH MUSCLES: A PROMISING APPROACH FOR MUSCLE VOLUME QUANTIFICATION IN LONGITUDINAL STUDIES
    Le Troter, A.
    Foure, A.
    Guye, M.
    Confort-Gouny, S.
    Mattei, J. -P.
    Guis, S.
    Gondin, J.
    Salort-Campana, E.
    Bendahan, D.
    ANNALS OF THE RHEUMATIC DISEASES, 2016, 75 : 1224 - 1224