Artificial intelligence-based predictions in neovascular age-related macular degeneration

被引:14
作者
Ferrara, Daniela [1 ]
Newton, Elizabeth M. [1 ]
Lee, Aaron Y. [2 ]
机构
[1] Genentech Inc, 1 DNA Way, San Francisco, CA 94080 USA
[2] Univ Washington, Sch Med, Dept Ophthalmol, Seattle, WA 98195 USA
关键词
artificial intelligence; deep learning; machine learning; neovascular age-related macular degeneration; treatment prediction; GROWTH-FACTOR THERAPY; 2.0 MG RANIBIZUMAB; FLUID VOLUMES; QUANTIFICATION; BIOMARKERS; EFFICACY; OUTCOMES; NETWORK; SAFETY; ACUITY;
D O I
10.1097/ICU.0000000000000782
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose of review Predicting treatment response and optimizing treatment regimen in patients with neovascular age-related macular degeneration (nAMD) remains challenging. Artificial intelligence-based tools have the potential to increase confidence in clinical development of new therapeutics, facilitate individual prognostic predictions, and ultimately inform treatment decisions in clinical practice. Recent findings To date, most advances in applying artificial intelligence to nAMD have focused on facilitating image analysis, particularly for automated segmentation, extraction, and quantification of imaging-based features from optical coherence tomography (OCT) images. No studies in our literature search evaluated whether artificial intelligence could predict the treatment regimen required for an optimal visual response for an individual patient. Challenges identified for developing artificial intelligence-based models for nAMD include the limited number of large datasets with high-quality OCT data, limiting the patient populations included in model development; lack of counterfactual data to inform how individual patients may have fared with an alternative treatment strategy; and absence of OCT data standards, impairing the development of models usable across devices. Artificial intelligence has the potential to enable powerful prognostic tools for a complex nAMD treatment landscape; however, additional work remains before these tools are applicable to informing treatment decisions for nAMD in clinical practice.
引用
收藏
页码:389 / 396
页数:8
相关论文
共 47 条
[1]   Innovative therapies for neovascular age-related macular degeneration [J].
Al-Khersan, Hasenin ;
Hussain, Rehan M. ;
Ciulla, Thomas A. ;
Dugel, Pravin U. .
EXPERT OPINION ON PHARMACOTHERAPY, 2019, 20 (15) :1879-1891
[2]   Ranibizumab versus verteporfin for neovascular age-related macular degeneration [J].
Brown, David M. ;
Kaiser, Peter K. ;
Michels, Mark ;
Soubrane, Gisele ;
Heier, Jeffrey S. ;
Kim, Robert Y. ;
Sy, Judy P. ;
Schneider, Susan .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 355 (14) :1432-1444
[3]   Twelve-Month Efficacy and Safety of 0.5 mg or 2.0 mg Ranibizumab in Patients with Subfoveal Neovascular Age-related Macular Degeneration [J].
Busbee, Brandon G. ;
Ho, Allen C. ;
Brown, David M. ;
Heier, Jeffrey S. ;
Suner, Ivan J. ;
Li, Zhengrong ;
Rubio, Roman G. ;
Lai, Phillip .
OPHTHALMOLOGY, 2013, 120 (05) :1046-1056
[4]   Impact of macular fluid volume fluctuations on visual acuity during anti-VEGF therapy in eyes with nAMD [J].
Chakravarthy, Usha ;
Havilio, Moshe ;
Syntosi, Annie ;
Pillai, Natasha ;
Wilkes, Emily ;
Benyamini, Gidi ;
Best, Catherine ;
Sagkriotis, Alexandros .
EYE, 2021, 35 (11) :2983-2990
[5]   Automated Identification of Lesion Activity in Neovascular Age-Related Macular Degeneration [J].
Chakravarthy, Usha ;
Goldenberg, Dafna ;
Young, Graham ;
Havilio, Moshe ;
Rafaeli, Omer ;
Benyamini, Gidi ;
Loewenstein, Anat .
OPHTHALMOLOGY, 2016, 123 (08) :1731-1736
[6]   Visual Acuity Outcomes and Anti-Vascular Endothelial Growth Factor Therapy Intensity in Neovascular Age-Related Macular Degeneration Patients A Real-World Analysis of 49 485 Eyes [J].
Ciulla, Thomas A. ;
Hussain, Rehan M. ;
Pollack, John S. ;
Williams, David F. .
OPHTHALMOLOGY RETINA, 2020, 4 (01) :19-30
[7]   Real-world Outcomes of Anti-Vascular Endothelial Growth Factor Therapy in Neovascular Age-Related Macular Degeneration in the United States [J].
Ciulla, Thomas A. ;
Huang, Forbes ;
Westby, Keith ;
Williams, David F. ;
Zaveri, Sandi ;
Patel, Samir C. .
OPHTHALMOLOGY RETINA, 2018, 2 (07) :645-653
[8]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[9]   HAWK and HARRIER: Phase 3, Multicenter, Randomized, Double-Masked Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration [J].
Dugel, Pravin U. ;
Koh, Adrian ;
Ogura, Yuichiro ;
Jaffe, Glenn J. ;
Schmidt-Erfurth, Ursula ;
Brown, David M. ;
Gomes, Andre, V ;
Warburton, James ;
Weichselberger, Andreas ;
Holz, Frank G. .
OPHTHALMOLOGY, 2020, 127 (01) :72-84
[10]   Longitudinal Assessment of Ellipsoid Zone Integrity, Subretinal Hyperreflective Material, and Subretinal Pigment Epithelium Disease in Neovascular Age-Related Macular Degeneration [J].
Ehlers, Justis P. ;
Zahid, Robert ;
Kaiser, Peter K. ;
Heier, Jeffrey S. ;
Brown, David M. ;
Meng, Xiangyi ;
Reese, Jamie ;
Le, Thuy K. ;
Lunasco, Leina ;
Hu, Ming ;
Srivastava, Sunil K. .
OPHTHALMOLOGY RETINA, 2021, 5 (12) :1204-1213