γ-secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage

被引:127
作者
Chyung, JH
Raper, DM
Selkoe, DJ
机构
[1] Harvard Univ, Sch Med, Inst Med 730, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Ctr Neurol Dis, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M409272200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Research on Alzheimer's disease led to the identification of a novel proteolytic mechanism in all metazoans, the presenilin/gamma-secretase complex. This unique intramembrane-cleaving aspartyl protease is required for the normal processing of Notch, Jagged, beta-amyloid precursor protein (APP), E-cadherin, and many other receptor-like proteins. We recently provided indirect evidence of gamma-secretase activity at the cell surface in HeLa cells following inhibition of receptor-mediated endocytosis. Here, we directly identify and isolate gamma-secretase as an intact complex (Presenilin, Nicastrin, Aph-1, and Pen-2) from the plasma membrane, both in overexpressing cell lines and endogenously. Inhibition of its proteolytic activity allowed cell surface gamma-secretase to be captured in association with its plasma membrane localized APP substrates (C83 and C99). Moreover,.non-denaturing isolation of the intact enzyme complex revealed that cell surface gamma-secretase can specifically generate amyloid P-protein from an APP substrate and similarly cleave a Notch substrate. These data directly establish the proteolytic function of gamma-secretase on the plasma membrane, independent of a hypothesized substrate trafficking role. We conclude that presenilin/gamma-secretase exists as a mature complex at the cell surface, where it interacts with and can cleave its substrates, consistent with an essential function in processing many adhesion molecules and receptors required for cell-cell interaction or intercellular signaling.
引用
收藏
页码:4383 / 4392
页数:10
相关论文
共 54 条
[1]   Presenilin 1 controls γ-secretase processing of amyloid precursor protein in pre-Golgi compartments of hippocampal neurons [J].
Annaert, WG ;
Levesque, L ;
Craessaerts, K ;
Dierinck, I ;
Snellings, G ;
Westaway, D ;
George-Hyslop, PS ;
Cordell, B ;
Fraser, P ;
De Strooper, B .
JOURNAL OF CELL BIOLOGY, 1999, 147 (02) :277-294
[2]   Functional γ-secretase complex assembly in Golgi/trans-Golgi network:: interactions among presenilin, nicastrin, Aph1, Pen-2, and γ-secretase substrates [J].
Baulac, S ;
LaVoie, MJ ;
Kimberly, WT ;
Strahle, J ;
Wolfe, MS ;
Selkoe, DJ ;
Xia, WM .
NEUROBIOLOGY OF DISEASE, 2003, 14 (02) :194-204
[3]  
Berezovska O, 2003, J NEUROSCI, V23, P4560
[4]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[5]   A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60 [J].
Cao, XW ;
Südhof, TC .
SCIENCE, 2001, 293 (5527) :115-120
[6]   Presenilin-1 differentially facilitates endoproteolysis of the β-amyloid precursor protein and Notch [J].
Capell, A ;
Steiner, H ;
Romig, H ;
Keck, S ;
Baader, M ;
Grim, MG ;
Baumeister, R ;
Haass, C .
NATURE CELL BIOLOGY, 2000, 2 (04) :205-211
[7]   Inhibition of receptor-mediated endocytosis demonstrates generation of amyloid β-protein at the cell surface [J].
Chyung, JH ;
Selkoe, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (51) :51035-51043
[8]   Membrane topology of γ-secretase component PEN-2 [J].
Crystal, AS ;
Morais, VA ;
Pierson, TC ;
Pijak, DS ;
Carlin, D ;
Lee, VMY ;
Doms, RW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (22) :20117-20123
[9]   The amyloid precursor protein (APP)-cytoplasmic fragment generated by γ-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture [J].
Cupers, P ;
Orlans, I ;
Craessaerts, K ;
Annaert, W ;
De Strooper, B .
JOURNAL OF NEUROCHEMISTRY, 2001, 78 (05) :1168-1178
[10]   The discrepancy between presenilin subcellular localization and γ-secretase processing of amyloid precursor protein [J].
Cupers, P ;
Bentahir, M ;
Craessaerts, K ;
Orlans, I ;
Vanderstichele, H ;
Saftig, P ;
De Strooper, B ;
Annaert, W .
JOURNAL OF CELL BIOLOGY, 2001, 154 (04) :731-740