Machine learning classification of Gaia Data Release 2

被引:18
|
作者
Bai, Yu [1 ]
Liu, Ji-Feng [1 ,2 ]
Wang, Song [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Coll Astron & Space Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: data analysis; stars: general; Gaia catalog; ROBUST MORPHOLOGICAL CLASSIFICATION; SUPPORT VECTOR MACHINES; FIELD;
D O I
10.1088/1674-4527/18/10/118
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Machine learning has increasingly gained more popularity with its incredibly powerful ability to make predictions or calculate suggestions for large amounts of data. We apply machine learning classification to 85 613 922 objects in the Gaia Data Release 2, based on a combination of Pan-STARRS 1 and AllWISE data. The classification results are cross-matched with the Simbad database, and the total accuracy is 91.9%. Our sample is dominated by stars, similar to 98%, and galaxies make up 2%. For the objects with negative parallaxes, about 2.5% are galaxies and QSOs, while about 99.9% are stars if the relative parallax uncertainties are smaller than 0.2. Our result implies that using the threshold of 0 < sigma(pi)/pi < 0.2 could yield a very clean stellar sample.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Gaia Early Data Release 3: Building the Gaia DR3 source list - Cross-match of Gaia observations
    Torra, F.
    Castaneda, J.
    Fabricius, C.
    Lindegren, L.
    Clotet, M.
    Gonzalez-Vidal, J. J.
    Bartolome, S.
    Bastian, U.
    Bernet, M.
    Biermann, M.
    Garralda, N.
    Gurpide, A.
    Lammers, U.
    Portell, J.
    Torra, J.
    ASTRONOMY & ASTROPHYSICS, 2021, 649
  • [42] Predicting astrometric microlensing events from Gaia Data Release 3
    Su, Jie
    Wang, Jiancheng
    Zhang, Yigong
    Cheng, Xiangming
    Yang, Lei
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (01) : 1177 - 1193
  • [43] Machine Learning Techniques for Stellar Light Curve Classification
    Hinners, Trisha A.
    Tat, Kevin
    Thorp, Rachel
    ASTRONOMICAL JOURNAL, 2018, 156 (01)
  • [44] Gaia Early Data Release 3 Structure and properties of the Magellanic Clouds
    Luri, X.
    Chemin, L.
    Clementini, G.
    Delgado, H. E.
    McMillan, P. J.
    Romero-Gomez, M.
    Balbinot, E.
    Castro-Ginard, A.
    Mor, R.
    Ripepi, V.
    Sarro, L. M.
    Cioni, M. -R. L.
    Fabricius, C.
    Garofalo, A.
    Helmi, A.
    Muraveva, T.
    Brown, A. G. A.
    Vallenari, A.
    Prusti, T.
    de Bruijne, J. H. J.
    Babusiaux, C.
    Biermann, M.
    Creevey, O. L.
    Evans, D. W.
    Eyer, L.
    Hutton, A.
    Jansen, F.
    Jordi, C.
    Klioner, S. A.
    Lammers, U.
    Lindegren, L.
    Mignard, F.
    Panem, C.
    Pourbaix, D.
    Randich, S.
    Sartoretti, P.
    Soubiran, C.
    Walton, N. A.
    Arenou, F.
    Bailer-Jones, C. A. L.
    Bastian, U.
    Cropper, M.
    Drimmel, R.
    Katz, D.
    Lattanzi, M. G.
    van Leeuwen, F.
    Bakker, J.
    Castaneda, J.
    De Angeli, F.
    Ducourant, C.
    ASTRONOMY & ASTROPHYSICS, 2021, 649
  • [45] BANYAN. XIII. A First Look at Nearby Young Associations with Gaia Data Release 2
    Gagne, Jonathan
    Faherty, Jacqueline K.
    ASTROPHYSICAL JOURNAL, 2018, 862 (02)
  • [46] Gaia Data Release 3 Hot-star radial velocities
    Blomme, R.
    Fremat, Y.
    Sartoretti, P.
    Guerrier, A.
    Panuzzo, P.
    Katz, D.
    Seabroke, G. M.
    Thevenin, F.
    Cropper, M.
    Benson, K.
    Damerdji, Y.
    Haigron, R.
    Marchal, O.
    Smith, M.
    Baker, S.
    Chemin, L.
    David, M.
    Dolding, C.
    Gosset, E.
    Janssen, K.
    Jasniewicz, G.
    Lobel, A.
    Plum, G.
    Samaras, N.
    Snaith, O.
    Soubiran, C.
    Vanel, O.
    Zwitter, T.
    Brouillet, N.
    Caffau, E.
    Crifo, F.
    Fabre, C.
    Fragkoudi, F.
    Huckle, H. E.
    Piccolo, A. Jean-Antoine
    Lasne, Y.
    Leclerc, N.
    Mastrobuono-Battisti, A.
    Royer, F.
    Viala, Y.
    Zorec, J.
    ASTRONOMY & ASTROPHYSICS, 2023, 674
  • [47] 207 NEW OPEN STAR CLUSTERS WITHIN 1 KPC FROM GAIA DATA RELEASE 2
    Sim, Gyuheon
    Lee, Sang Hyun
    Ann, Hong Bae
    Kim, Seunghyeon
    JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY, 2019, 52 (05) : 145 - 158
  • [48] Machine learning-based identification of Gaia astrometric exoplanet orbits
    Sahlmann, Johannes
    Gomez, Pablo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 537 (02) : 1130 - 1145
  • [49] PERFORMANCE OF MACHINE LEARNING METHODS IN CLASSIFICATION MODELS WITH HIGH-DIMENSIONAL DATA
    Zekic-Susac, Marijana
    Pfeifer, Sanja
    Sarlija, Natasa
    SOR'13 PROCEEDINGS: THE 12TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2013, : 219 - 224
  • [50] Predicting Heart Diseases Using Machine Learning and Different Data Classification Techniques
    El-Sofany, Hosam F.
    IEEE ACCESS, 2024, 12 : 106146 - 106160