Machine learning classification of Gaia Data Release 2

被引:18
|
作者
Bai, Yu [1 ]
Liu, Ji-Feng [1 ,2 ]
Wang, Song [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Coll Astron & Space Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: data analysis; stars: general; Gaia catalog; ROBUST MORPHOLOGICAL CLASSIFICATION; SUPPORT VECTOR MACHINES; FIELD;
D O I
10.1088/1674-4527/18/10/118
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Machine learning has increasingly gained more popularity with its incredibly powerful ability to make predictions or calculate suggestions for large amounts of data. We apply machine learning classification to 85 613 922 objects in the Gaia Data Release 2, based on a combination of Pan-STARRS 1 and AllWISE data. The classification results are cross-matched with the Simbad database, and the total accuracy is 91.9%. Our sample is dominated by stars, similar to 98%, and galaxies make up 2%. For the objects with negative parallaxes, about 2.5% are galaxies and QSOs, while about 99.9% are stars if the relative parallax uncertainties are smaller than 0.2. Our result implies that using the threshold of 0 < sigma(pi)/pi < 0.2 could yield a very clean stellar sample.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Gaia Early Data Release 3 The astrometric solution
    Lindegren, L.
    Klioner, S. A.
    Hernandez, J.
    Bombrun, A.
    Ramos-Lerate, M.
    Steidelmuller, H.
    Bastian, U.
    Biermann, M.
    de Torres, A.
    Gerlach, E.
    Geyer, R.
    Hilger, T.
    Hobbs, D.
    Lammers, U.
    McMillan, P. J.
    Stephenson, C. A.
    Castaneda, J.
    Davidson, M.
    Fabricius, C.
    Gracia-Abril, G.
    Portell, J.
    Rowell, N.
    Teyssier, D.
    Torra, F.
    Bartolome, S.
    Clotet, M.
    Garralda, N.
    Gonzalez-Vidal, J. J.
    Torra, J.
    Abbas, U.
    Altmann, M.
    Varela, E. Anglada
    Balaguer-Nunez, L.
    Balog, Z.
    Barache, C.
    Becciani, U.
    Bernet, M.
    Bertone, S.
    Bianchi, L.
    Bouquillon, S.
    Brown, A. G. A.
    Bucciarelli, B.
    Busonero, D.
    Butkevich, A. G.
    Buzzi, R.
    Cancelliere, R.
    Carlucci, T.
    Charlot, P.
    Cioni, M-R L.
    Crosta, M.
    ASTRONOMY & ASTROPHYSICS, 2021, 649
  • [22] Gaia Data Release 3 The first Gaia catalogue of eclipsing-binary candidates
    Mowlavi, N.
    Holl, B.
    Lecoeur-Taibi, I.
    Barblan, F.
    Kochoska, A.
    Prsa, A.
    Mazeh, T.
    Rimoldini, L.
    Gavras, P.
    Audard, M.
    De Fombelle, G. Jevardat
    Nienartowicz, K.
    Garcia-Lario, P.
    Eyer, L.
    ASTRONOMY & ASTROPHYSICS, 2023, 674
  • [23] Gaia Data Release 2 Specific characterisation and validation of all-sky Cepheids and RR Lyrae stars
    Clementini, G.
    Ripepi, V.
    Molinaro, R.
    Garofalo, A.
    Muraveva, T.
    Rimoldini, L.
    Guy, L. P.
    de Fombelle, G. Jevardat
    Nienartowicz, K.
    Marchal, O.
    Audard, M.
    Holl, B.
    Leccia, S.
    Marconi, M.
    Musella, I.
    Mowlavi, N.
    Lecoeur-Taibi, I.
    Eyer, L.
    De Ridder, J.
    Regibo, S.
    Sarro, L. M.
    Szabados, L.
    Evans, D. W.
    Riello, M.
    ASTRONOMY & ASTROPHYSICS, 2019, 622
  • [24] Gaia Early Data Release 3 Acceleration of the Solar System from Gaia astrometry
    Klioner, S. A.
    Mignard, F.
    Lindegren, L.
    Bastian, U.
    McMillan, P. J.
    Hernandez, J.
    Hobbs, D.
    Ramos-Lerate, M.
    Biermann, M.
    Bombrun, A.
    de Torres, A.
    Gerlach, E.
    Geyer, R.
    Hilger, T.
    Lammers, U.
    Steidelmueller, H.
    Stephenson, C. A.
    Brown, A. G. A.
    Vallenari, A.
    Prusti, T.
    de Bruijne, J. H. J.
    Babusiaux, C.
    Creevey, O. L.
    Evans, D. W.
    Eyer, L.
    Hutton, A.
    Jansen, F.
    Jordi, C.
    Luri, X.
    Panem, C.
    Pourbaix, D.
    Randich, S.
    Sartoretti, P.
    Soubiran, C.
    Walton, N. A.
    Arenou, F.
    Bailer-Jones, C. A. L.
    Cropper, M.
    Drimmel, R.
    Katz, D.
    Lattanzi, M. G.
    van Leeuwen, F.
    Bakker, J.
    Castaneda, J.
    De Angeli, F.
    Ducourant, C.
    Fabricius, C.
    Fouesneau, M.
    Fremat, Y.
    Guerra, R.
    ASTRONOMY & ASTROPHYSICS, 2021, 649
  • [25] Classification performance of machine learning methods in different data structures
    Aglarci, Ali Vasfi
    Bal, Cengiz
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (12) : 6471 - 6489
  • [26] Gaia Data Release 3 All-sky classification of 12.4 million variable sources into 25 classes
    Rimoldini, Lorenzo
    Holl, Berry
    Gavras, Panagiotis
    Audard, Marc
    De Ridder, Joris
    Mowlavi, Nami
    Nienartowicz, Krzysztof
    de Fombelle, Gregory Jevardat
    Lecoeur-Taibi, Isabelle
    Karbevska, Lea
    Evans, Dafydd W.
    Abraham, Peter
    Carnerero, Maria I.
    Clementini, Gisella
    Distefano, Elisa
    Garofalo, Alessia
    Garcia-Lario, Pedro
    Gomel, Roy
    Klioner, Sergei A.
    Kruszynska, Katarzyna
    Lanzafame, Alessandro C.
    Lebzelter, Thomas
    Marton, Gabor
    Mazeh, Tsevi
    Molinaro, Roberto
    Panahi, Aviad
    Raiteri, Claudia M.
    Ripepi, Vincenzo
    Szabados, Laszlo
    Teyssier, David
    Trabucchi, Michele
    Wyrzykowski, Lukasz
    Zucker, Shay
    Eyer, Laurent
    ASTRONOMY & ASTROPHYSICS, 2023, 674
  • [27] Machine learning applied to multifrequency data in astrophysics: blazar classification
    Arsioli, B.
    Dedin, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (02) : 1750 - 1764
  • [28] Characterizing low-contrast Galactic open clusters with Gaia Data Release 2
    Angelo, M. S.
    Santos, J. F. C., Jr.
    Corradi, W. J. B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (03) : 3473 - 3489
  • [29] Gaia Data Release 3 Gaia scan-angle-dependent signals and spurious periods
    Holl, B.
    Fabricius, C.
    Portell, J.
    Lindegren, L.
    Panuzzo, P.
    Bernet, M.
    Castaneda, J.
    de Fombelle, G. Jevardat
    Audard, M.
    Ducourant, C.
    Harrison, D. L.
    Evans, D. W.
    Busso, G.
    Sozzetti, A.
    Gosset, E.
    Arenou, F.
    De Angeli, F.
    Riello, M.
    Eyer, L.
    Rimoldini, L.
    Gavras, P.
    Mowlavi, N.
    Nienartowicz, K.
    Lecoeur-Taiebi, I.
    Garcia-Lario, P.
    Pourbaix, D.
    ASTRONOMY & ASTROPHYSICS, 2023, 674
  • [30] Machine Learning Models for Cancer Type Classification with Unstructured Data
    Montelongo Gonzalez, Erick E.
    Reyes Ortiz, Jose A.
    Gonzalez Beltran, Beatriz A.
    COMPUTACION Y SISTEMAS, 2020, 24 (02): : 403 - 411