Machine learning classification of Gaia Data Release 2

被引:19
作者
Bai, Yu [1 ]
Liu, Ji-Feng [1 ,2 ]
Wang, Song [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Coll Astron & Space Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: data analysis; stars: general; Gaia catalog; ROBUST MORPHOLOGICAL CLASSIFICATION; SUPPORT VECTOR MACHINES; FIELD;
D O I
10.1088/1674-4527/18/10/118
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Machine learning has increasingly gained more popularity with its incredibly powerful ability to make predictions or calculate suggestions for large amounts of data. We apply machine learning classification to 85 613 922 objects in the Gaia Data Release 2, based on a combination of Pan-STARRS 1 and AllWISE data. The classification results are cross-matched with the Simbad database, and the total accuracy is 91.9%. Our sample is dominated by stars, similar to 98%, and galaxies make up 2%. For the objects with negative parallaxes, about 2.5% are galaxies and QSOs, while about 99.9% are stars if the relative parallax uncertainties are smaller than 0.2. Our result implies that using the threshold of 0 < sigma(pi)/pi < 0.2 could yield a very clean stellar sample.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
[Anonymous], ASTRON ASTROPHYS, DOI DOI 10.1051/0004-6361/200810784
[2]  
[Anonymous], 2016, ARXIV161205560
[3]  
Bai Y., 2018, ARXIV180700531
[4]  
Bai Y., 2018, UNPUB
[5]   Impact of basic angle variations on the parallax zero point for a scanning astrometric satellite [J].
Butkevich, Alexey G. ;
Klioner, Sergei A. ;
Lindegren, Lennart ;
Hobbs, David ;
van Leeuwen, Floor .
ASTRONOMY & ASTROPHYSICS, 2017, 603
[6]   A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images [J].
Huertas-Company, M. ;
Rouan, D. ;
Tasca, L. ;
Soucail, G. ;
Le Fevre, O. .
ASTRONOMY & ASTROPHYSICS, 2008, 478 (03) :971-980
[7]   A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images II. Quantifying morphological k-correction in the COSMOS field at 1 &lt; z &lt; 2: Ks band vs. I band [J].
Huertas-Company, M. ;
Tasca, L. ;
Rouan, D. ;
Pelat, D. ;
Kneib, J. P. ;
Le Fevre, O. ;
Capak, P. ;
Kartaltepe, J. ;
Koekemoer, A. ;
McCracken, H. J. ;
Salvato, M. ;
Sanders, D. B. ;
Willott, C. .
ASTRONOMY & ASTROPHYSICS, 2009, 497 (03) :743-753
[8]   Large scale structure in the local Universe - The 2MASS galaxy catalog [J].
Jarrett, T .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2004, 21 (04) :396-403
[9]  
Liao S., 2018, P INT ASTRONOMICAL U, V330, P231
[10]  
Liao S.-l., 2018, ARXIV180408821