Identification of Bouc-Wen type models using the Transitional Markov Chain Monte Carlo method

被引:65
作者
Ortiz, Gilberto A. [1 ]
Alvarez, Diego A. [1 ]
Bedoya-Ruiz, Daniel [1 ]
机构
[1] Univ Nacl Colombia, Manizales 170004, Colombia
关键词
Bouc-Wen-Baber-Noori model; Hysteresis; Bayesian analysis; System identification; Transitional Markov Chain Monte Carlo (TMCMC); NONLINEAR HYSTERETIC SYSTEMS; PARAMETER-ESTIMATION; RANDOM VIBRATION; CLASS SELECTION; STRUCTURAL MODELS; VALIDATION; JOINTS; SLIP;
D O I
10.1016/j.compstruc.2014.10.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bayesian model updating techniques are becoming the standard tool for the identification of nonlinear dynamical systems, because unlike other identification schemes which compute maximum likelihood values of parameters, Bayesian techniques provide probabilistic information of the estimates, which can be useful at the moment of making decisions with respect to the selection of parameters and/or mathematical models that simulate the nonlinear behavior experienced by the system. The aim of this paper is to provide an overview of the application of the Transitional Markov Chain Monte Carlo (TMCMC) method to the identification of the parameters of Bouc-Wen type models. The TMCMC method is a Bayesian model updating technique which not only finds the most plausible model parameters but also estimates the probability distribution of those parameters given the data measured at the laboratory. The TMCMC method identifies the structural system and allows the observation of multi-modality of the Bouc-Wen-Baber-Noori (BWBN) model of hysteresis. The performance of the algorithm is assessed using simulated and real data. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:252 / 269
页数:18
相关论文
共 53 条
  • [1] Performance of nonlinear degrading structures: Identification, validation, and prediction
    Ajavakom, N.
    Ng, C. H.
    Ma, F.
    [J]. COMPUTERS & STRUCTURES, 2008, 86 (7-8) : 652 - 662
  • [2] [Anonymous], THESIS U POLITECNICA
  • [3] BABER TT, 1981, J ENG MECH DIV-ASCE, V107, P1069
  • [4] RANDOM VIBRATION OF DEGRADING, PINCHING SYSTEMS
    BABER, TT
    NOORI, MN
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1985, 111 (08): : 1010 - 1026
  • [5] MODELING GENERAL HYSTERESIS BEHAVIOR AND RANDOM VIBRATION APPLICATION
    BABER, TT
    NOORI, MN
    [J]. JOURNAL OF VIBRATION ACOUSTICS STRESS AND RELIABILITY IN DESIGN-TRANSACTIONS OF THE ASME, 1986, 108 (04): : 411 - 420
  • [6] Hierarchical semi-active control of base-isolated structures using a new inverse model of magnetorheological dampers
    Bahar, Arash
    Pozo, Francesc
    Acho, Leonardo
    Rodellar, Jose
    Barbat, Alex H.
    [J]. COMPUTERS & STRUCTURES, 2010, 88 (7-8) : 483 - 496
  • [7] Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation
    Beck, JL
    Au, SK
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2002, 128 (04) : 380 - 391
  • [8] Experimental and analytical research on seismic vulnerability of low-cost ferrocement dwelling houses
    Bedoya-Ruiz, Daniel
    Hurtado, Jorge E.
    Pujades, Lluis
    [J]. STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2010, 6 (1-2) : 55 - 62
  • [9] Bellman R.E., 1961, Adaptive control processes
  • [10] Bishop Christopher, 2006, Pattern Recognition and Machine Learning, DOI 10.1117/1.2819119