Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery

被引:215
|
作者
Baeza, Alejandro [1 ,2 ]
Colilla, Montserrat [1 ,2 ]
Vallet-Regi, Maria [1 ,2 ]
机构
[1] Univ Complutense Madrid, Dept Quim Inorgan & Bioinorgan, Fac Farm, Inst Invest Sanitaria Hosp, E-28040 Madrid, Spain
[2] Fac Farm, Ctr Bioengn Biomat & Nanomed CIBER BBN, Dept Quim Inorgan & Bioinorgan, Madrid 28040, Spain
关键词
active targeting; cancer; mesoporous silica nanoparticles; passive targeting; stimuli-responsive drug delivery; INTRACELLULAR CONTROLLED-RELEASE; SUPPORTED LIPID-BILAYERS; OPERATED MECHANIZED NANOPARTICLES; IRON-OXIDE NANOPARTICLES; CANCER-CELLS; IN-VIVO; TRIGGERED RELEASE; SURFACE FUNCTIONALIZATION; ENDOSOMAL ESCAPE; CONTRAST AGENTS;
D O I
10.1517/17425247.2014.953051
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Introduction: Mesoporous silica nanoparticles (MSNPs) are one of the most promising inorganic drug delivery systems (DDSs). The design and development of tumour-targeted MSNPs with stimuli-responsive drug release capability aim at enhancing the efficiency and minimising the side effects of antitumour drugs for cancer therapy. Areas covered: This review provides an overview of the scientific advances in MSNPs for tumour-targeted stimuli-responsive drug delivery. The key factors that govern the passive accumulation of MSNPs within solid tumours such as size, shape and surface functionalisation are roughly described. The different active targeting strategies for the specific retention and uptake of MSNPs by tumour cells are also outlined. The approaches developed so far for the synthesis of smart MSNPs capable of releasing the trapped drugs in response to internal or external stimuli and their applications are reviewed. Critical considerations in the use of MSNPs for the treatment of cancer treatment are discussed. The future prospects and key factors concerning the clinical application of MSNPs are considered throughout the manuscript. Expert opinion: MSNPs are promising nanocarriers to efficiently transport and site-specifically deliver highly toxic drugs, such as chemotherapeutic agents for cancer treatment. However, there are certain issues that should be overcome to improve the suitability of MSNPs for clinical applications. Increasing the penetration capability of MSNPs within tumour tissues, providing them of appropriate colloidal stability in physiological fluids and ensuring that their active targeting capability and stimuli-responsive performance are preserved in complex biological media are of foremost significance. Few in vivo evaluation tests of MSNPs have been reported and much research effort into this field is mandatory to be able to move from bench to bedside.
引用
收藏
页码:319 / 337
页数:19
相关论文
共 50 条
  • [21] The Application of Stimuli-responsive Nanocarriers for Targeted Drug Delivery
    Zhou, Mengxue
    Wen, Kaikai
    Bi, Ying
    Lu, Huiru
    Chen, Jun
    Hu, Yi
    Chai, Zhifang
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2017, 17 (20) : 2319 - 2334
  • [22] Recent Advances in Mesoporous Silica Nanoparticles for Targeted Drug Delivery Applications
    Abu-Dief, Ahmed
    Alsehli, Mosa
    Al-Enizi, Abdullah
    Nafady, Ayman
    CURRENT DRUG DELIVERY, 2022, 19 (04) : 436 - 450
  • [23] Current Stimuli-Responsive Mesoporous Silica Nanoparticles for Cancer Therapy
    Moodley, Thashini
    Singh, Moganavelli
    PHARMACEUTICS, 2021, 13 (01) : 1 - 19
  • [24] Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review
    Moreira, Andre F.
    Dias, Diana R.
    Correia, Ilidio J.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 236 : 141 - 157
  • [25] Advances in stimuli-responsive gold nanorods for drug-delivery and targeted therapy systems
    Hajebi, Sakineh
    Chamanara, Mohsen
    Nasiri, Shadi Sadat
    Ghasri, Mahsa
    Mouraki, Alireza
    Heidari, Reza
    Nourmohammadi, Abbas
    BIOMEDICINE & PHARMACOTHERAPY, 2024, 180
  • [26] Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release
    Huang, Xuan
    Wu, Shanshan
    Du, Xuezhong
    CARBON, 2016, 101 : 135 - 142
  • [27] In Situ-Forming Gels Loaded with Stimuli-Responsive Gated Mesoporous Silica Nanoparticles for Local Sustained Drug Delivery
    de la Torre, Cristina
    Coll, Carmen
    Ultimo, Amelia
    Sancenon, Felix
    Martinez-Manez, Ramon
    Ruiz-Hernandez, Eduardo
    PHARMACEUTICS, 2023, 15 (04)
  • [28] Overview of stimuli-responsive mesoporous organosilica nanocarriers for drug delivery
    Guimaraes, Rafaela S.
    Rodrigues, Carolina F.
    Moreira, Andre F.
    Correia, Ilidio J.
    PHARMACOLOGICAL RESEARCH, 2020, 155
  • [29] Ammonium salt modified mesoporous silica nanoparticles for dual intracellular stimuli-responsive gene delivery
    Li, Yujie
    Hei, Mingyang
    Xu, Yufang
    Qian, Xuhong
    Zhu, Weiping
    JOURNAL OF CONTROLLED RELEASE, 2017, 259 : E139 - E140
  • [30] Stimuli-responsive nanoliposomes as prospective nanocarriers for targeted drug delivery
    Bilal, Muhammad
    Qindeel, Maimoona
    Raza, Ali
    Mehmood, Shahid
    Rahdar, Abbas
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2021, 66