Antimonotonicity and multistability in a fractional order memristive chaotic oscillator

被引:13
作者
Chen, Chao-Yang [1 ,2 ,3 ]
Rajagopal, Karthikeyan [4 ]
Hamarash, Ibrahim Ismael [5 ]
Nazarimehr, Fahimeh [6 ]
Alsaadi, Fawaz E. [7 ]
Hayat, Tasawar [8 ,9 ]
机构
[1] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Def Univ, Ctr Nonlinear Dynam, Bishoftu, Ethiopia
[5] Univ Kurdistan Hewler, Dept Comp Sci & Engn, Erbil, Iraq
[6] Amirkabir Univ Technol, Dept Biomed Engn, 424 Hafez Ave, Tehran 158754413, Iran
[7] King Abdulaziz Univ, Fac Comp & IT, Dept Informat Technol, Jeddah, Saudi Arabia
[8] Quaid I Azam Univ 45320, Dept Math, Islamabad 44000, Pakistan
[9] King Abdulaziz Univ, NAAM Res Grp, Jeddah, Saudi Arabia
基金
中国国家自然科学基金;
关键词
HIDDEN ATTRACTORS; SYSTEM; FLOWS; EQUILIBRIUM; CIRCUIT; LINE; COEXISTENCE; DYNAMICS; SURFACES; BEHAVIOR;
D O I
10.1140/epjst/e2019-800222-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A memristor diode bridge chaotic circuit is proposed in this paper. The proposed oscillator has only one nonlinear element in the form of memristor. Dynamical properties of the proposed oscillator are investigated. The fractional order model of the oscillator is designed using Grunwald-Letnikov (GL) method. Bifurcation diagrams are plotted which shows that the proposed oscillator exhibits multistability. Finally, the antimonotonicity property of the fractional order oscillator is discussed in detail with two control parameters. Such property has not been explored for fractional order systems before.
引用
收藏
页码:1969 / 1981
页数:13
相关论文
共 50 条
  • [41] Hidden extreme multistability in memristive hyperchaotic system
    Bao, B. C.
    Bao, H.
    Wang, N.
    Chen, M.
    Xu, Q.
    CHAOS SOLITONS & FRACTALS, 2017, 94 : 102 - 111
  • [42] Fractional - Order Chaotic Systems
    Petras, Ivo
    Bednarova, Dagmar
    2009 IEEE CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION (EFTA 2009), 2009,
  • [43] An Integer-Order Memristive System with Two-to Four-Scroll Chaotic Attractors and Its Fractional-Order Version with a Coexisting Chaotic Attractor
    Zhou, Ping
    Ke, Meihua
    COMPLEXITY, 2018,
  • [44] Multistability and anomalies in oscillator models of lossy power grids
    Delabays, Robin
    Jafarpour, Saber
    Bullo, Francesco
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [45] Chaos in a memristive oscillator with six lines of equilibria
    Ramadoss, Janarthanan
    Volos, Christos
    Viet-Thanh Pham
    Rajagopal, Karthikeyan
    Hussain, Iqtadar
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (16-17) : 3059 - 3065
  • [46] Constructing a Memristive Chaotic Oscillator With 2-D Offset Boosting
    Huang, Keyu
    Li, Chunbiao
    Zhang, Xin
    Moroz, Irene
    Liu, Zuohua
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2025, 44 (01) : 294 - 303
  • [47] Fractional-order memristor-based chaotic jerk system with no equilibrium point and its fractional-order backstepping control
    Prakash, Pankaj
    Singh, Jay Prakash
    Roy, B. K.
    IFAC PAPERSONLINE, 2018, 51 (01): : 1 - 6
  • [48] Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator
    Bao, B. C.
    Wu, P. Y.
    Bao, H.
    Xu, Q.
    Chen, M.
    CHAOS SOLITONS & FRACTALS, 2018, 106 : 161 - 170
  • [49] Undamped oscillations in fractional-order Duffing oscillator
    Rostami, Mohammad
    Haeri, Mohammad
    SIGNAL PROCESSING, 2015, 107 : 361 - 367
  • [50] Dynamic analysis and FPGA implementation of a 5D multi-wing fractional-order memristive chaotic system with hidden attractors
    Yu, Fei
    Xu, Shuai
    Xiao, Xiaoli
    Yao, Wei
    Huang, Yuanyuan
    Cai, Shuo
    Li, Yi
    INTEGRATION-THE VLSI JOURNAL, 2024, 96