Antimonotonicity and multistability in a fractional order memristive chaotic oscillator

被引:13
|
作者
Chen, Chao-Yang [1 ,2 ,3 ]
Rajagopal, Karthikeyan [4 ]
Hamarash, Ibrahim Ismael [5 ]
Nazarimehr, Fahimeh [6 ]
Alsaadi, Fawaz E. [7 ]
Hayat, Tasawar [8 ,9 ]
机构
[1] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Def Univ, Ctr Nonlinear Dynam, Bishoftu, Ethiopia
[5] Univ Kurdistan Hewler, Dept Comp Sci & Engn, Erbil, Iraq
[6] Amirkabir Univ Technol, Dept Biomed Engn, 424 Hafez Ave, Tehran 158754413, Iran
[7] King Abdulaziz Univ, Fac Comp & IT, Dept Informat Technol, Jeddah, Saudi Arabia
[8] Quaid I Azam Univ 45320, Dept Math, Islamabad 44000, Pakistan
[9] King Abdulaziz Univ, NAAM Res Grp, Jeddah, Saudi Arabia
基金
中国国家自然科学基金;
关键词
HIDDEN ATTRACTORS; SYSTEM; FLOWS; EQUILIBRIUM; CIRCUIT; LINE; COEXISTENCE; DYNAMICS; SURFACES; BEHAVIOR;
D O I
10.1140/epjst/e2019-800222-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A memristor diode bridge chaotic circuit is proposed in this paper. The proposed oscillator has only one nonlinear element in the form of memristor. Dynamical properties of the proposed oscillator are investigated. The fractional order model of the oscillator is designed using Grunwald-Letnikov (GL) method. Bifurcation diagrams are plotted which shows that the proposed oscillator exhibits multistability. Finally, the antimonotonicity property of the fractional order oscillator is discussed in detail with two control parameters. Such property has not been explored for fractional order systems before.
引用
收藏
页码:1969 / 1981
页数:13
相关论文
共 50 条
  • [31] Simplest Megastable Chaotic Oscillator
    Jafari, Sajad
    Rajagopal, Karthikeyan
    Hayat, Tasawar
    Alsaedi, Ahmed
    Viet-Thanh Pham
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (13):
  • [32] A Conservative Memristive Chaotic System with Extreme Multistability and Its Application in Image Encryption
    Li, Jian
    Liang, Bo
    Zhang, Xiefu
    Yu, Zhixin
    ENTROPY, 2023, 25 (12)
  • [33] On an Optimal Control Applied in MEMS Oscillator with Chaotic Behavior including Fractional Order
    Tusset, Angelo Marcelo
    Janzen, Frederic Conrad
    Rocha, Rodrigo Tumolin
    Balthazar, Jose Manoel
    COMPLEXITY, 2018,
  • [34] A Chaotic Quadratic Oscillator with Only Squared Terms: Multistability, Impulsive Control, and Circuit Design
    Veeman, Dhinakaran
    Alanezi, Ahmad
    Natiq, Hayder
    Jafari, Sajad
    Abd El-Latif, Ahmed A.
    SYMMETRY-BASEL, 2022, 14 (02):
  • [35] Characteristics Analysis of the Fractional-Order Chaotic Memristive Circuit Based on Chua's Circuit
    Yang, Feifei
    Li, Peng
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (05) : 1862 - 1870
  • [36] Antimonotonicity, Bifurcation and Multistability in the Vallis Model for El Nino
    Rajagopal, Karthikeyan
    Jafari, Sajad
    Viet-Thanh Pham
    Wei, Zhouchao
    Premraj, Durairaj
    Thamilmaran, Kathamuthu
    Karthikeyan, Anitha
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (03):
  • [37] A new megastable chaotic oscillator with singularity
    Wang, Zhen
    Abdolmohammadi, Hamid Reza
    Chen, Mingshu
    Chudzik, Agnieszka
    Jafari, Sajad
    Hussain, Iqtadar
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (12-13) : 2341 - 2348
  • [38] Analysis and circuit implementation of a non-equilibrium fractional-order chaotic system with hidden multistability and special offset-boosting
    Yan, Shaohui
    Wang, Ertong
    Wang, Qiyu
    CHAOS, 2023, 33 (03)
  • [39] Dynamical analysis of a new multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset boosting
    Bayani, Atiyeh
    Rajagopal, Karthikeyan
    Khalaf, Abdul Jalil M.
    Jafari, Sajad
    Leutcho, G. D.
    Kengne, J.
    PHYSICS LETTERS A, 2019, 383 (13) : 1450 - 1456
  • [40] A hyperchaotic memristive system with extreme multistability and conservativeness
    Li, Yuxia
    Wang, Mingfa
    Chang, Hui
    Wang, Hui
    Chen, Guanrong
    NONLINEAR DYNAMICS, 2024, 112 (05) : 3851 - 3868