Antimonotonicity and multistability in a fractional order memristive chaotic oscillator

被引:13
作者
Chen, Chao-Yang [1 ,2 ,3 ]
Rajagopal, Karthikeyan [4 ]
Hamarash, Ibrahim Ismael [5 ]
Nazarimehr, Fahimeh [6 ]
Alsaadi, Fawaz E. [7 ]
Hayat, Tasawar [8 ,9 ]
机构
[1] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
[4] Def Univ, Ctr Nonlinear Dynam, Bishoftu, Ethiopia
[5] Univ Kurdistan Hewler, Dept Comp Sci & Engn, Erbil, Iraq
[6] Amirkabir Univ Technol, Dept Biomed Engn, 424 Hafez Ave, Tehran 158754413, Iran
[7] King Abdulaziz Univ, Fac Comp & IT, Dept Informat Technol, Jeddah, Saudi Arabia
[8] Quaid I Azam Univ 45320, Dept Math, Islamabad 44000, Pakistan
[9] King Abdulaziz Univ, NAAM Res Grp, Jeddah, Saudi Arabia
基金
中国国家自然科学基金;
关键词
HIDDEN ATTRACTORS; SYSTEM; FLOWS; EQUILIBRIUM; CIRCUIT; LINE; COEXISTENCE; DYNAMICS; SURFACES; BEHAVIOR;
D O I
10.1140/epjst/e2019-800222-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A memristor diode bridge chaotic circuit is proposed in this paper. The proposed oscillator has only one nonlinear element in the form of memristor. Dynamical properties of the proposed oscillator are investigated. The fractional order model of the oscillator is designed using Grunwald-Letnikov (GL) method. Bifurcation diagrams are plotted which shows that the proposed oscillator exhibits multistability. Finally, the antimonotonicity property of the fractional order oscillator is discussed in detail with two control parameters. Such property has not been explored for fractional order systems before.
引用
收藏
页码:1969 / 1981
页数:13
相关论文
共 62 条
[1]   Design of multiwing-multiscroll grid compound chaotic system and its circuit implementation [J].
Ai, Wei ;
Sun, Kehui ;
Fu, Yuanli .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2018, 29 (06)
[2]  
[Anonymous], 2017, INT J BIFURCAT CHAOS, DOI DOI 10.1142/S0218127417500973
[3]   Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator [J].
Bao, B. C. ;
Wu, P. Y. ;
Bao, H. ;
Wu, H. G. ;
Zhang, X. ;
Chen, M. .
CHAOS SOLITONS & FRACTALS, 2018, 109 :146-153
[4]   Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator [J].
Bao, B. C. ;
Wu, P. Y. ;
Bao, H. ;
Xu, Q. ;
Chen, M. .
CHAOS SOLITONS & FRACTALS, 2018, 106 :161-170
[5]   Hidden extreme multistability in memristive hyperchaotic system [J].
Bao, B. C. ;
Bao, H. ;
Wang, N. ;
Chen, M. ;
Xu, Q. .
CHAOS SOLITONS & FRACTALS, 2017, 94 :102-111
[6]   Coexistence of multiple bifurcation modes in memristive diode-bridge-based canonical Chua's circuit [J].
Bao, Bocheng ;
Xu, Li ;
Wu, Zhimin ;
Chen, Mo ;
Wu, Huagan .
INTERNATIONAL JOURNAL OF ELECTRONICS, 2018, 105 (07) :1159-1169
[7]   Three-Dimensional Memristive Hindmarsh-Rose Neuron Model with Hidden Coexisting Asymmetric Behaviors [J].
Bao, Bocheng ;
Hu, Aihuang ;
Bao, Han ;
Xu, Quan ;
Chen, Mo ;
Wu, Huagan .
COMPLEXITY, 2018,
[8]   Two-memristor-based Chua's hyperchaotic circuit with plane equilibrium and its extreme multistability [J].
Bao, Bocheng ;
Jiang, Tao ;
Wang, Guangyi ;
Jin, Peipei ;
Bao, Han ;
Chen, Mo .
NONLINEAR DYNAMICS, 2017, 89 (02) :1157-1171
[9]   Coexisting infinitely many attractors in active band-pass filter-based memristive circuit [J].
Bao, Bocheng ;
Jiang, Tao ;
Xu, Quan ;
Chen, Mo ;
Wu, Huagan ;
Hu, Yihua .
NONLINEAR DYNAMICS, 2016, 86 (03) :1711-1723
[10]   Generalized Memristor Consisting of Diode Bridge with First Order Parallel RC Filter [J].
Bao, Bocheng ;
Yu, Jingjing ;
Hu, Fengwei ;
Liu, Zhong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (11)