Study Designs for Extending Causal Inferences From a Randomized Trial to a Target Population

被引:53
作者
Dahabreh, Issa J. [1 ,2 ,3 ,4 ]
Haneuse, Sebastien J-P A. [5 ]
Robins, James M. [4 ,5 ]
Robertson, Sarah E. [1 ,2 ]
Buchanan, Ashley L. [6 ]
Stuart, Elizabeth A. [7 ,8 ,9 ]
Hernan, Miguel A. [4 ,5 ,10 ]
机构
[1] Brown Univ, Sch Publ Hlth, Ctr Evidence Synth Hlth, Providence, RI 02912 USA
[2] Brown Univ, Sch Publ Hlth, Dept Hlth Serv Policy & Practice, Providence, RI 02912 USA
[3] Brown Univ, Sch Publ Hlth, Dept Epidemiol, Providence, RI 02912 USA
[4] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[5] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[6] Univ Rhode Isl, Dept Pharm Practice, Coll Pharm, Kingston, RI 02881 USA
[7] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD USA
[8] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[9] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Hlth Policy & Management, Baltimore, MD USA
[10] Harvard MIT Div Hlth Sci & Technol, Boston, MA USA
基金
美国国家卫生研究院; 美国医疗保健研究与质量局;
关键词
causal inference; generalizability; randomized trials; transportability; GENERALIZING EVIDENCE; TRANSPORTABILITY; SELECTION; MODELS;
D O I
10.1093/aje/kwaa270
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
In this article, we examine study designs for extending (generalizing or transporting) causal inferences from a randomized trial to a target population. Specifically, we consider nested trial designs, where randomized individuals are nested within a sample from the target population, and nonnested trial designs, including composite data-set designs, where observations from a randomized trial are combined with those from a separately obtained sample of nonrandomized individuals from the target population. We show that the counterfactual quantities that can be identified in each study design depend on what is known about the probability of sampling nonrandomized individuals. For each study design, we examine identification of counterfactual outcome means via the g-formula and inverse probability weighting. Last, we explore the implications of the sampling properties underlying the designs for the identification and estimation of the probability of trial participation.
引用
收藏
页码:1632 / 1642
页数:11
相关论文
共 45 条
[1]  
[Anonymous], 2014, HEALTH TECHNOL ASSES, V18, P1, DOI 10.3310/hta18430
[2]  
[Anonymous], 1991, 107 NAT BUR EC RES
[3]   Causal inference and the data-fusion problem [J].
Bareinboim, Elias ;
Pearl, Judea .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (27) :7345-7352
[4]   On the semi-parametric efficiency of logistic regression under case-control sampling [J].
Breslow, NE ;
Robins, JM ;
Wellner, JA .
BERNOULLI, 2000, 6 (03) :447-455
[5]   Generalizing evidence from randomized trials using inverse probability of sampling weights [J].
Buchanan, Ashley L. ;
Hudgens, Michael G. ;
Cole, Stephen R. ;
Mollan, Katie R. ;
Sax, Paul E. ;
Daar, Eric S. ;
Adimora, Adaora A. ;
Eron, Joseph J. ;
Mugavero, Michael J. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2018, 181 (04) :1193-1209
[6]   Randomized, Controlled Trials in Health Insurance Systems [J].
Choudhry, Niteesh K. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (10) :957-964
[7]   Generalizing Evidence From Randomized Clinical Trials to Target Populations [J].
Cole, Stephen R. ;
Stuart, Elizabeth A. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 172 (01) :107-115
[8]   MAXIMUM-LIKELIHOOD ESTIMATOR FOR CHOICE-BASED SAMPLES [J].
COSSLETT, SR .
ECONOMETRICA, 1981, 49 (05) :1289-1316
[9]  
Dahabreh IJ, 2019, GEN TRIAL FINDINGS N
[10]   Benchmarking Observational Methods by Comparing Randomized Trials and Their Emulations [J].
Dahabreh, Issa J. ;
Robins, James M. ;
Hernan, Miguel A. .
EPIDEMIOLOGY, 2020, 31 (05) :614-619