Extreme value modeling;
Random censoring;
Maximum a posteriori estimator;
Mean posterior estimator;
Asymptotic normality of posterior;
Simulations;
EXTREME;
INFERENCE;
D O I:
10.1016/j.csda.2016.06.009
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Bayesian estimation of the tail index of a heavy-tailed distribution is addressed when data are randomly right-censored. Maximum a posteriori and mean posterior estimators are constructed for various prior distributions of the tail index. Convergence of the posterior distribution of the tail index to a Gaussian distribution is established. Finite sample properties of the proposed estimators are investigated via simulations. Tail index estimation requires selecting an appropriate threshold for constructing relative excesses. A Monte Carlo procedure is proposed for tackling this issue. Finally, the proposed estimators are illustrated on a medical dataset. (C) 2016 Elsevier B.V. All rights reserved.
机构:
Univ Versailles St Quentin En Yvelines, Lab Math Versailles, CNRS, UMR 8100, F-78035 Versailles, FranceUniv Versailles St Quentin En Yvelines, Lab Math Versailles, CNRS, UMR 8100, F-78035 Versailles, France
Worms, Julien
Worms, Rym
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, UPEMLV, UPEC, Lab Anal & Math Appl,CNRS,UMR 8050, F-94010 Creteil, FranceUniv Versailles St Quentin En Yvelines, Lab Math Versailles, CNRS, UMR 8100, F-78035 Versailles, France
机构:
Univ Paris Saclay, Lab Math Versailles, CNRS UMR 8100, Versailles, France
Univ Versailles St Quentin En Yvelines, Lab Math Versailles, CNRS UMR 8100, Versailles, FranceUniv Paris Saclay, Lab Math Versailles, CNRS UMR 8100, Versailles, France
Worms, Julien
Worms, Rym
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Anal & Math Appl, CNRS UMR 8050, UGE,UPEC, F-94010 Creteil, FranceUniv Paris Saclay, Lab Math Versailles, CNRS UMR 8100, Versailles, France