Bayesian estimation of the tail index of a heavy tailed distribution under random censoring

被引:5
|
作者
Ameraoui, Abdelkader [1 ]
Boukhetala, Kamal [1 ]
Dupuy, Jean-Francois [2 ]
机构
[1] USTHB, Fac Math, PoBox 32, Algiers, Algeria
[2] IRMAR INSA Rennes, 20 Ave Buttes Coesmes, F-35708 Rennes 7, France
关键词
Extreme value modeling; Random censoring; Maximum a posteriori estimator; Mean posterior estimator; Asymptotic normality of posterior; Simulations; EXTREME; INFERENCE;
D O I
10.1016/j.csda.2016.06.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bayesian estimation of the tail index of a heavy-tailed distribution is addressed when data are randomly right-censored. Maximum a posteriori and mean posterior estimators are constructed for various prior distributions of the tail index. Convergence of the posterior distribution of the tail index to a Gaussian distribution is established. Finite sample properties of the proposed estimators are investigated via simulations. Tail index estimation requires selecting an appropriate threshold for constructing relative excesses. A Monte Carlo procedure is proposed for tackling this issue. Finally, the proposed estimators are illustrated on a medical dataset. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 168
页数:21
相关论文
共 50 条