Bayesian estimation of the tail index of a heavy tailed distribution under random censoring

被引:6
作者
Ameraoui, Abdelkader [1 ]
Boukhetala, Kamal [1 ]
Dupuy, Jean-Francois [2 ]
机构
[1] USTHB, Fac Math, PoBox 32, Algiers, Algeria
[2] IRMAR INSA Rennes, 20 Ave Buttes Coesmes, F-35708 Rennes 7, France
关键词
Extreme value modeling; Random censoring; Maximum a posteriori estimator; Mean posterior estimator; Asymptotic normality of posterior; Simulations; EXTREME; INFERENCE;
D O I
10.1016/j.csda.2016.06.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bayesian estimation of the tail index of a heavy-tailed distribution is addressed when data are randomly right-censored. Maximum a posteriori and mean posterior estimators are constructed for various prior distributions of the tail index. Convergence of the posterior distribution of the tail index to a Gaussian distribution is established. Finite sample properties of the proposed estimators are investigated via simulations. Tail index estimation requires selecting an appropriate threshold for constructing relative excesses. A Monte Carlo procedure is proposed for tackling this issue. Finally, the proposed estimators are illustrated on a medical dataset. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 168
页数:21
相关论文
共 35 条
[1]  
Andersen P. K., 1993, Statistical Models Based on Counting Processes.Springer Series in Statistics
[2]  
[Anonymous], 2004, Statistics of Extremes
[3]  
[Anonymous], 1971, An Introduction to Bayesian Inference in Econometrics
[4]  
BEIRLANT J, 2007, EXTREMES, V10, P151
[5]   Peaks-Over-Threshold Modeling Under Random Censoring [J].
Beirlant, Jan ;
Guillou, Armelle ;
Toulemonde, Gwladys .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (07) :1158-1179
[6]   Parameter estimation of the generalized Pareto distribution-Part II [J].
Bermudez, P. de Zea ;
Kotz, Samuel .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (06) :1374-1397
[7]   Gaussian approximation to the extreme value index estimator of a heavy-tailed distribution under random censoring [J].
Brahimi B. ;
Meraghni D. ;
Necir A. .
Mathematical Methods of Statistics, 2015, 24 (4) :266-279
[8]   A BAYESIAN APPROACH FOR ESTIMATING EXTREME QUANTILES UNDER A SEMIPARAMETRIC MIXTURE MODEL [J].
Cabras, Stefano ;
Eugenia Castellanos, Maria .
ASTIN BULLETIN, 2011, 41 (01) :87-106
[9]  
Coles S., 2001, An introduction to statistical modeling of extreme values, DOI [10.1007/978-1-4471-3675-0, DOI 10.1007/978-1-4471-3675-0]
[10]   Bayesian methods in extreme value modelling: A review and new developments [J].
Coles, SG ;
Powell, EA .
INTERNATIONAL STATISTICAL REVIEW, 1996, 64 (01) :119-136