Development and validation of a clinical risk model to predict the hospital mortality in ventilated patients with acute respiratory distress syndrome: a population-based study

被引:10
作者
Ye, Weiyan [1 ,2 ]
Li, Rujian [1 ,2 ]
Liang, Hanwen [2 ]
Huang, Yongbo [1 ,2 ]
Xu, Yonghao [1 ,2 ]
Li, Yuchong [1 ,2 ]
Ou, Limin [3 ]
Mao, Pu [1 ,2 ]
Liu, Xiaoqing [1 ,2 ]
Li, Yimin [1 ,2 ]
机构
[1] Guangzhou Med Univ, Affiliated Hosp 1, Dept Crit Care Med, Guangzhou, Peoples R China
[2] Guangzhou Med Univ, Affiliated Hosp 1, State Key Lab Resp Dis, Natl Clin Res Ctr Resp Dis,Guangzhou Inst Resp Hl, Guangzhou, Peoples R China
[3] Jinan Univ, Affiliated Hosp 1, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Acute respiratory distress syndrome; Database; Mortality; Prediction; Ventilation; ACUTE PHYSIOLOGY; SCORE; ARDS; BIOMARKER;
D O I
10.1186/s12890-022-02057-0
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background Large variability in mortality exists in patients of acute respiratory distress syndrome (ARDS), especially those with invasive ventilation. The aim of this study was to develop a model to predict risk of in-hospital death in ventilated ARDS patients. Methods Ventilated patients with ARDS from two public databases (MIMIC-III and eICU-CRD) were randomly divided as training cohort and internal validation cohort. Least absolute shrinkage and selection operator (LASSO) and then Logistic regression was used to construct a predictive model with demographic, clinical, laboratory, comorbidities and ventilation variables ascertained at first 24 h of ICU admission and invasive ventilation. Our model was externally validated using data from another database (MIMIC-IV). Results A total of 1075 adult patients from MIMIC-III and eICU were randomly divided into training cohort (70%, n = 752) and internal validation cohort (30%, n = 323). 521 patients were included from MIMIC-IV. From 176 potential predictors, 9 independent predictive factors were included in the final model. Five variables were ascertained within the first 24 h of ICU admission, including age (OR, 1.02; 95% CI: 1.01-1.03), mean of respiratory rate (OR, 1.04; 95% CI: 1.01-1.08), the maximum of INR (OR, 1.14; 95% CI: 1.03-1.31) and alveolo-arterial oxygen difference (OR, 1.002; 95% CI: 1.001-1.003) and the minimum of RDW (OR, 1.17; 95% CI: 1.09-1.27). And four variables were collected within the first 24 h of invasive ventilation: mean of temperature (OR, 0.70; 95% CI: 0.57-0.86), the maximum of lactate (OR, 1.15; 95% CI: 1.09-1.22), the minimum of blood urea nitrogen (OR, 1.02; 95% CI: 1.01-1.03) and white blood cell counts (OR, 1.03; 95% CI: 1.01-1.06). Our model achieved good discrimination (AUC: 0.77, 95% CI: 0.73-0.80) in training cohort but the performance declined in internal (AUC: 0.75, 95% CI: 0.69-0.80) and external validation cohort (0.70, 95% CI: 0.65-0.74) and showed modest calibration. Conclusions A risk score based on routinely collected variables at the start of admission to ICU and invasive ventilation can predict mortality of ventilated ARDS patients, with a moderate performance.
引用
收藏
页数:11
相关论文
共 51 条
[11]   Serial evaluation of the SOFA score to predict outcome in critically ill patients [J].
Ferreira, FL ;
Bota, DP ;
Bross, A ;
Mélot, C ;
Vincent, JL .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2001, 286 (14) :1754-1758
[12]   Plasma suPAR as a prognostic biological marker for ICU mortality in ARDS patients [J].
Geboers, Diederik G. P. J. ;
de Beer, Friso M. ;
Tuip-de Boer, Anita M. ;
van der Poll, Tom ;
Horn, Janneke ;
Cremer, Olaf L. ;
Bonten, Marc J. M. ;
Ong, David S. Y. ;
Schultz, Marcus J. ;
Bos, Lieuwe D. J. .
INTENSIVE CARE MEDICINE, 2015, 41 (07) :1281-1290
[13]   Clinical predictors of and mortality in acute respiratory distress syndrome: Potential role of red cell transfusion [J].
Gong, MN ;
Thompson, BT ;
Williams, P ;
Pothier, L ;
Boyce, PD ;
Christiani, DC .
CRITICAL CARE MEDICINE, 2005, 33 (06) :1191-1198
[14]   Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients [J].
Haas, Sebastian A. ;
Lange, Theresa ;
Saugel, Bernd ;
Petzoldt, Martin ;
Fuhrmann, Valentin ;
Metschke, Maria ;
Kluge, Stefan .
INTENSIVE CARE MEDICINE, 2016, 42 (02) :202-210
[15]   Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study [J].
Huang, Bingsheng ;
Liang, Dong ;
Zou, Rushi ;
Yu, Xiaxia ;
Dan, Guo ;
Huang, Haofan ;
Liu, Heng ;
Liu, Yong .
ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (09)
[16]   MIMIC-III, a freely accessible critical care database [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Shen, Lu ;
Lehman, Li-wei H. ;
Feng, Mengling ;
Ghassemi, Mohammad ;
Moody, Benjamin ;
Szolovits, Peter ;
Celi, Leo Anthony ;
Mark, Roger G. .
SCIENTIFIC DATA, 2016, 3
[17]   A New Severity of Illness Scale Using a Subset of Acute Physiology and Chronic Health Evaluation Data Elements Shows Comparable Predictive Accuracy [J].
Johnson, Alistair E. W. ;
Kramer, Andrew A. ;
Clifford, Gari D. .
CRITICAL CARE MEDICINE, 2013, 41 (07) :1711-1718
[18]   Between-trial heterogeneity in ARDS research [J].
Juschten, J. ;
Tuinman, P. R. ;
Guo, T. ;
Juffermans, N. P. ;
Schultz, M. J. ;
Loer, S. A. ;
Girbes, A. R. J. ;
de Grooth, H. J. .
INTENSIVE CARE MEDICINE, 2021, 47 (04) :422-434
[19]   Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study [J].
Laffey, John G. ;
Bellani, Giacomo ;
Pham, Tai ;
Fan, Eddy ;
Madotto, Fabiana ;
Bajwa, Ednan K. ;
Brochard, Laurent ;
Clarkson, Kevin ;
Esteban, Andres ;
Gattinoni, Luciano ;
van Haren, Frank ;
Heunks, Leo M. ;
Kurahashi, Kiyoyasu ;
Laake, Jon Henrik ;
Larsson, Anders ;
McAuley, Daniel F. ;
McNamee, Lia ;
Nin, Nicolas ;
Qiu, Haibo ;
Ranieri, Marco ;
Rubenfeld, Gordon D. ;
Thompson, B. Taylor ;
Wrigge, Hermann ;
Slutsky, Arthur S. ;
Pesenti, Antonio .
INTENSIVE CARE MEDICINE, 2016, 42 (12) :1865-1876
[20]   A NEW SIMPLIFIED ACUTE PHYSIOLOGY SCORE (SAPS-II) BASED ON A EUROPEAN NORTH-AMERICAN MULTICENTER STUDY [J].
LEGALL, JR ;
LEMESHOW, S ;
SAULNIER, F .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1993, 270 (24) :2957-2963