Evidence for isotropic s-wave superconductivity in high-entropy alloys

被引:9
|
作者
Leung, Casey K. W. [1 ]
Zhang, Xiaofu [2 ,3 ]
von Rohr, Fabian [4 ]
Lortz, Rolf [1 ,5 ]
Jack, Berthold [1 ,5 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Hong Kong, Peoples R China
[2] Chinese Acad Sci, State Key Lab Funct Mat Informat, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[3] CAS Ctr Excellence Superconducting Elect, Shanghai 200050, Peoples R China
[4] Univ Zurich, Dept Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[5] Hong Kong Univ Sci & Technol, IAS Ctr Quantum Technol, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
关键词
CRITICAL FIELD;
D O I
10.1038/s41598-022-16355-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-entropy alloys (HEA) form through the random arrangement of five or more chemical elements on a crystalline lattice. Despite the significant amount of resulting compositional disorder, a subset of HEAs enters a superconducting state below critical temperatures, T-c < 10 K. The superconducting properties of the known HEAs seem to suffice a Bardeen-Cooper-Schrieffer (BCS) description, but little is known about their superconducting order parameter and the microscopic role of disorder. We report on magnetic susceptibility measurements on films of the superconducting HEA (TaNb)(1-x) (ZrHfTi)(x) for characterizing the lower and upper critical fields H-c,(1) (T) and H-c,(2) (T), respectively as a function of temperature T. Our resulting analysis of the Ginzburg-Landau coherence length and penetration depth demonstrates that HEAs of this type are single-band isotropic s-wave superconductors in the dirty limit. Despite a significant difference in the elemental composition between the x = 0.35 and x = 0.71 films, we find that the observed T-c variations cannot be explained by disorder effects.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Designing high-entropy alloys
    Canter, Neil
    Tribology and Lubrication Technology, 2022, 78 (11): : 18 - 19
  • [32] Nanocrystalline high-entropy alloys
    Carl C. Koch
    Journal of Materials Research, 2017, 32 : 3435 - 3444
  • [33] Progress in High-Entropy Alloys
    Chuan Zhang
    Michael C. Gao
    Shih-Kang Lin
    JOM, 2019, 71 : 3417 - 3418
  • [34] Progress in High-Entropy Alloys
    Zhang, Chuan
    Gao, Michael C.
    Lin, Shih-Kang
    JOM, 2019, 71 (10) : 3417 - 3418
  • [35] ForewordSymposium on High-Entropy Alloys
    Metallurgical and Materials Transactions A, 2015, 46 : 1467 - 1467
  • [36] Progress in High-Entropy Alloys
    Michael C. Gao
    JOM, 2013, 65 : 1749 - 1750
  • [37] ForewordSymposium on High-Entropy Alloys
    Peter K. Liaw
    Gongyao Wang
    Michael C. Gao
    Suveen N. Mathaudhu
    Metallurgical and Materials Transactions A, 2014, 45 : 179 - 179
  • [38] On the diffusion in high-entropy alloys
    Beke, D. L.
    Erdelyi, G.
    MATERIALS LETTERS, 2016, 164 : 111 - 113
  • [39] Hexagonal High-entropy Alloys
    Feuerbacher, Michael
    Heidelmann, Markus
    Thomas, Carsten
    MATERIALS RESEARCH LETTERS, 2015, 3 (01): : 1 - 6
  • [40] Design of High-Entropy Alloys
    Stepanov, Nikita
    Zherebtsov, Sergey
    METALS, 2022, 12 (06)