ON EXTREMA OF STABLE PROCESSES

被引:37
作者
Kuznetsov, Alexey [1 ]
机构
[1] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Stable processes; supremum; Wiener-Hopf factorization; Mellin transform; functional equations; elliptic functions; double Gamma function; q-Pochhammer symbol; Clausen function; WIENER-HOPF FACTORIZATION; DOUBLE-GAMMA-FUNCTION; NO NEGATIVE JUMPS; LEVY PROCESSES; SUPREMUM; TIME; LAW;
D O I
10.1214/10-AOP577
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the Wiener-Hopf factorization and the distribution of extrema for general stable processes. By connecting the Wiener-Hopf factors with a certain elliptic-like function we are able to obtain many explicit and general results, such as infinite series representations and asymptotic expansions for the density of supremum, explicit expressions for the Wiener-Hopf factors and the Mellin transform of the supremum, quasi-periodicity and functional identities for these functions, finite product representations in some special cases and identities in distribution satisfied by the supremum functional.
引用
收藏
页码:1027 / 1060
页数:34
相关论文
共 26 条
[1]  
Andrews G.E., 1999, Encycl. Math. Appl., V71
[2]  
[Anonymous], 2007, TABLE INTEGRALS SERI
[3]  
[Anonymous], 1997, J ROYAL STAT SOC SER
[4]  
[Anonymous], 1997, CONTINUED FRACTIONS
[5]  
[Anonymous], 1900, P LOND MATH SOC
[7]   The law of the supremum of a stable Levy process with no negative jumps [J].
Bernyk, Violetta ;
Dalang, Robert C. ;
Peskir, Goran .
ANNALS OF PROBABILITY, 2008, 36 (05) :1777-1789
[8]  
Bertoin J., 1996, Cambridge Tracts in Mathematics, V121
[9]   Uniform asymptotic expansions for the Barnes double gamma function [J].
Billingham, J ;
King, AC .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1964) :1817-1829
[10]   FLUCTUATION THEORY IN CONTINUOUS TIME [J].
BINGHAM, NH .
ADVANCES IN APPLIED PROBABILITY, 1975, 7 (04) :705-766