Modularity of Galois traces of ray class invariants

被引:3
作者
Jung, Ho Yun [1 ]
Kim, Chang Heon [2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 03760, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Modular forms; Modular traces; Galois traces; Class field theory;
D O I
10.1007/s11139-019-00220-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
After Zagier's significant work (in: Bogomolov and Katzarkov (eds) Motives, polylogarithms and hodge theory, part I, International Press, Somerville, 2002) on traces of singular moduli, Bruinier and Funke (J Reine Angew Math 594:1-33, 2006) generalized his result to the traces of singular values of modular functions on modular curves of arbitrary genus. In class field theory, the extended ring class field is a generalization of the ray class field over an imaginary quadratic field. By using Shimura's reciprocity law, we construct primitive generators of the extended ring class fields by using Siegel functions of arbitrary level N >= 2 and identify their Galois traces with Fourier coefficients of weight 3/2 harmonic weak Maass forms. This would extend the results of Jeon et al. (Math Ann 353:37-63, 2012) and Jung et al. (Modularity of Galois traces of Weber's resolvents, under revision).
引用
收藏
页码:355 / 383
页数:29
相关论文
共 18 条
[1]   Traces of CM values of modular functions [J].
Bruinier, JH ;
Funke, J .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 594 :1-33
[2]   Primes of the form x2 + ny2 with conditions x ≡ 1 mod N, y ≡ 0 mod N [J].
Cho, Bumkyu .
JOURNAL OF NUMBER THEORY, 2010, 130 (04) :852-861
[3]  
Cox D.A, 2013, PURE APPL MATH HOBOK, V2nd
[4]   HEEGNER POINTS AND DERIVATIVES OF L-SERIES .2. [J].
GROSS, B ;
KOHNEN, W ;
ZAGIER, D .
MATHEMATISCHE ANNALEN, 1987, 278 (1-4) :497-562
[5]  
Janusz G.J., 1996, ALGEBRAIC NUMBER FIE, Vsecond
[6]   Modularity of Galois traces of class invariants [J].
Jeon, Daeyeol ;
Kang, Soon-Yi ;
Kim, Chang Heon .
MATHEMATISCHE ANNALEN, 2012, 353 (01) :37-63
[7]   Modularity of Galois traces of Weber's resolvents [J].
Jung, Ho Yun ;
Kim, Chang Heon ;
Kwon, Soonhak ;
Kwon, Yeong-Wook .
JOURNAL OF NUMBER THEORY, 2019, 203 :249-275
[8]   Primitive and Totally Primitive Fricke Families with Applications [J].
Jung, Ho Yun ;
Koo, Ja Kyung ;
Shin, Dong Hwa .
RESULTS IN MATHEMATICS, 2017, 71 (3-4) :841-858
[9]   RAY CLASS INVARIANTS OVER IMAGINARY QUADRATIC FIELDS [J].
Jung, Ho Yun ;
Koo, Ja Kyung ;
Shin, Dong Hwa .
TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (03) :413-426
[10]  
Kaneko Masanobu, 1995, AUTOMORPHIC FORMS AL, P172