An operator splitting method for the Wigner-Poisson problem

被引:48
作者
Arnold, A
Ringhofer, C
机构
[1] TECH UNIV BERLIN, FACHBEREICH MATH, D-10623 BERLIN, GERMANY
[2] ARIZONA STATE UNIV, DEPT MATH, TEMPE, AZ 85287 USA
关键词
operator splitting methods; Wigner functions;
D O I
10.1137/S003614299223882X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wigner-Poisson equation describes the quantum-mechanical motion of electrons in a self-consistent electrostatic field. The equation consists of a transport term and a non-linear pseudodifferential operator. In this paper we analyze an operator splitting method for the linear Wigner equation and the coupled Wigner-Poisson problem. For this semidiscretization in rime, consistency and nonlinear stability are established in an L(2)-framework. We present a numerical example to illustrate the method.
引用
收藏
页码:1622 / 1643
页数:22
相关论文
共 27 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
ARNOLD A, 1990, B UNIONE MAT ITAL, V4B, P449
[3]   NUMERICAL-ANALYSIS OF THE DETERMINISTIC PARTICLE METHOD APPLIED TO THE WIGNER EQUATION [J].
ARNOLD, A ;
NIER, F .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :645-669
[4]   OPERATOR SPLITTING METHODS APPLIED TO SPECTRAL DISCRETIZATIONS OF QUANTUM TRANSPORT-EQUATIONS [J].
ARNOLD, A ;
RINGHOFER, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1876-1894
[5]   ON ABSORBING BOUNDARY-CONDITIONS FOR QUANTUM TRANSPORT-EQUATIONS [J].
ARNOLD, A .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1994, 28 (07) :853-872
[6]   THE 3-DIMENSIONAL WIGNER-POISSON PROBLEM - EXISTENCE, UNIQUENESS AND APPROXIMATION [J].
BREZZI, F ;
MARKOWICH, PA .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (01) :35-61
[7]   INTEGRATION OF VLASOV EQUATION IN CONFIGURATION SPACE [J].
CHENG, CZ ;
KNORR, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (03) :330-351
[8]   PRODUCT FORMULAS AND NUMERICAL ALGORITHMS [J].
CHORIN, AJ ;
HUGHES, TJR ;
MCCRACKEN, MF ;
MARSDEN, JE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (02) :205-256
[9]   WIGNER-FUNCTION MODEL OF A RESONANT-TUNNELING SEMICONDUCTOR-DEVICE [J].
FRENSLEY, WR .
PHYSICAL REVIEW B, 1987, 36 (03) :1570-1580
[10]   GLOBAL EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE WIGNER-POISSON AND SCHRODINGER-POISSON SYSTEMS [J].
ILLNER, R ;
ZWEIFEL, PF ;
LANGE, H .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (05) :349-376