Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells

被引:0
|
作者
McCullen, Seth D. [1 ,2 ]
Stevens, Derrick R. [3 ]
Roberts, Wesley A. [3 ]
Clarke, Laura I. [3 ]
Bernacki, Susan H. [1 ]
Gorga, Russell E. [2 ]
Loboa, Elizabeth G. [1 ]
机构
[1] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC USA
[2] N Carolina State Univ, Dept Text Engn, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA
[3] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
来源
关键词
adipose-derived human mesenchymal stem cells; multi-walled carbon nanotubes; bone tissue engineering; poly (lactic acid); electrospinning; nanocomposites;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrospun nanocomposite scaffolds were fabricated by encapsulating multi-walled carbon nanotubes (MWNT) in poly (lactic acid) (PLA) nanofibers. Scanning electron microscopy (SEM) confirmed the fabrication of nanofibers, and transmission electron microscopy identified the alignment and dispersion of MWNT along the axis of the fibers. Tensile testing showed an increase in the tensile modulus for a MWNT loading of 0.25 wt% compared with electrospun nanofibrous mats without MWNT reinforcement. Conductivity measurements indicated that the confined geometry of the fibrous system requires only minute doping to obtain significant enhancements at 0.32 wt%. Adipose-derived human mesenchymal stem cells (hMSCs) were seeded on electrospun scaffolds containing I wt% MWNT and 0 wt% MWNT, to determine the efficacy of the scaffolds for cell growth, and the effect of MWNT on hMSC viability and proliferation over two weeks in culture. Staining for live and dead cells and DNA quantification indicated that the hMSCs were alive and proliferating through day 14. SEM images of hMSCs at 14 (lays showed morphological differences, with hMSCs on PLA well spread and hMSCs on PLA with 1% MWNT closely packed and longitudinally aligned.
引用
收藏
页码:253 / 263
页数:11
相关论文
共 50 条
  • [41] In vitro chondrogenic differentiation of human adipose-derived stem cells with silk scaffolds
    Kim, Hyeon Joo
    Park, Sang-Hyug
    Durham, Jennah
    Gimble, Jeffrey M.
    Kaplan, David L.
    Dragoo, Jason L.
    JOURNAL OF TISSUE ENGINEERING, 2012, 3 (01) : 1 - 8
  • [42] Chondrogenic Differentiation of Human Adipose-derived Stem Cells in Alginate Sponge Scaffolds
    Choi, Moon Seop
    Jun, Young Joon
    Cho, Hyun Mi
    Oh, Deuk Young
    Ahn, Sang Tae
    Han, Dong-Keun
    Rhie, Jong Won
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2008, 5 (4-6) : 842 - 848
  • [43] Biocompatibility of polypropylene mesh scaffold with adipose-derived stem cells
    Cheng, Hui
    Zhang, Yanling
    Zhang, Bei
    Cheng, Jie
    Wang, Weiqi
    Tang, Xin
    Teng, Peng
    Li, Yanyu
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2017, 13 (06) : 2922 - 2926
  • [44] Growth and osteogenic differentiation of hASCs (human Adipose-derived Stem Cells) on scaffolds
    de Girolamo, L.
    Sartori, M. F.
    Bastoni, S.
    Rimondini, L.
    Weinstein, R.
    Brini, A. T.
    JOURNAL OF APPLIED BIOMATERIALS & BIOMECHANICS, 2007, 5 (03) : 198 - 199
  • [45] Watercress-based electrospun nanofibrous scaffolds enhance proliferation and stemness preservation of human adipose-derived stem cells
    Dadashpour, Mehdi
    Pilehvar-Soltanahmadi, Younes
    Mohammadi, Seyed Abolghasem
    Zarghami, Nosratollah
    Pourhassan-Moghaddam, Mohammad
    Alizadeh, Effat
    Maleki, Mohammad Jafar
    Firouzi-Amandi, Akram
    Nouri, Mohammad
    ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2018, 46 (04) : 819 - 830
  • [46] Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells
    Klinger, A.
    Kawata, M.
    Villalobos, M.
    Jones, R. B.
    Pike, S.
    Wu, N.
    Chang, S.
    Zhang, P.
    DiMuzio, P.
    Vernengo, J.
    Benvenuto, P.
    Goldfarb, R. D.
    Hunter, K.
    Liu, Y.
    Carpenter, J. P.
    Tulenko, T. N.
    HERNIA, 2016, 20 (01) : 161 - 170
  • [47] Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells
    A. Klinger
    M. Kawata
    M. Villalobos
    R. B. Jones
    S. Pike
    N. Wu
    S. Chang
    P. Zhang
    P. DiMuzio
    J. Vernengo
    P. Benvenuto
    R. D. Goldfarb
    K. Hunter
    Y. Liu
    J. P. Carpenter
    T. N. Tulenko
    Hernia, 2016, 20 : 161 - 170
  • [48] Chondrogenic potential of human bone marrow mesenchymal stem cells and adipose-derived mesenchymal stem cells.
    Danisovic, L.
    Lesny, P.
    Jendelova, P.
    Teyssler, P.
    Havlas, V.
    Fujerikova, G.
    Sykova, F.
    CYTOTHERAPY, 2006, 8
  • [49] Adipose-derived mesenchymal stem cells and regenerative medicine
    Konno, Masamitsu
    Hamabe, Atsushi
    Hasegawa, Shinichiro
    Ogawa, Hisataka
    Fukusumi, Takahito
    Nishikawa, Shimpei
    Ohta, Katsuya
    Kano, Yoshihiro
    Ozaki, Miyuki
    Noguchi, Yuko
    Sakai, Daisuke
    Kudoh, Toshihiro
    Kawamoto, Koichi
    Eguchi, Hidetoshi
    Satoh, Taroh
    Tanemura, Masahiro
    Nagano, Hiroaki
    Doki, Yuichiro
    Mori, Masaki
    Ishii, Hideshi
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2013, 55 (03) : 309 - 318
  • [50] Isolation and Characterization of Adipose-derived Mesenchymal Stem Cells (ADSCs) from Cattle
    Taofeng Lu
    Hui Xiong
    Kunfu Wang
    Shuo Wang
    Yuehui Ma
    Weijun Guan
    Applied Biochemistry and Biotechnology, 2014, 174 : 719 - 728