Modeling Asymmetric Interactions in Economy

被引:8
作者
Lachowicz, Miroslaw [1 ]
Leszczynski, Henryk [2 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Inst Appl Math & Mech, Ul Banacha 2, Warsaw 02097, Poland
[2] Univ Gdansk, Inst Math, Ul Wita Stwosza 57, Gdansk 80308, Poland
关键词
opinion dynamics; asymmetric interactions; kinetic equations; integro-differential equations; generalized inviscid Burgers equation; KINETIC-EQUATION; BLOW-UP; EQUILIBRIA;
D O I
10.3390/math8040523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a general nonlinear kinetic type equation that can describe the time evolution of a variable related to an economical state of an individual agent of the system. We assume asymmetric interactions between the agents. We show that in a corresponding limit, it is asymptotically equivalent to a nonlinear inviscid Burgers type equation.
引用
收藏
页数:14
相关论文
共 28 条
[1]   Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics [J].
Ajmone Marsan, G. ;
Bellomo, N. ;
Gibelli, L. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (06) :1051-1093
[2]   MARKET FOR LEMONS - QUALITY UNCERTAINTY AND MARKET MECHANISM [J].
AKERLOF, GA .
QUARTERLY JOURNAL OF ECONOMICS, 1970, 84 (03) :488-500
[3]  
[Anonymous], 1975, Sobolev Spaces
[4]  
Banasiak J, 2014, MODEL SIMUL SCI ENG, P1, DOI 10.1007/978-3-319-05140-6
[5]   ON A MACROSCOPIC LIMIT OF A KINETIC MODEL OF ALIGNMENT [J].
Banasiak, Jacek ;
Lachowicz, Miroslaw .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (14) :2647-2670
[6]   ON THE MATHEMATICAL THEORY OF THE DYNAMICS OF SWARMS VIEWED AS COMPLEX SYSTEMS [J].
Bellomo, N. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22
[7]   ON THE INTERPLAY BETWEEN BEHAVIORAL DYNAMICS AND SOCIAL INTERACTIONS IN HUMAN CROWDS [J].
Bellomo, Nicola ;
Gibelli, Livio ;
Outada, Nisrine .
KINETIC AND RELATED MODELS, 2019, 12 (02) :397-409
[8]   Forecasting Efficient Risk/Return Frontier for Equity Risk with a KTAP Approach-A Case Study in Milan Stock Exchange [J].
Dolfin, Marina ;
Leonida, Leone ;
Muzzupappa, Eleonora .
SYMMETRY-BASEL, 2019, 11 (08)
[9]   Bifurcation analysis of an orientational aggregation model [J].
Geigant, E ;
Stoll, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (06) :537-563
[10]   "Quantum Equilibrium-Disequilibrium": Asset price dynamics, symmetry breaking, and defaults as dissipative instantons [J].
Halperin, Igor ;
Dixon, Matthew .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 537