This paper is concerned with the problem of simultaneously tracking the direction-of-arrival (DOA) of far-field multiple moving sources/users in wireless communications using the vector-signal received by an antenna array of N elements. The antenna array can be rigid (fixed array locations) or flexible (time-varying array locations), and it is used in conjunction with a "manifold extender", a spatiotemporal state-space model and a Kalman-type tracking approach for non-stationary wireless channels. In particular, two tracking approaches are proposed. The first is based on an arrayed Extended Kalman Filter (arrayed-EKF) algorithm and the second on an arrayed Unscented Kalman Filter (arrayed-UKF) algorithm. Furthermore, if the array is rigid the spatiotemporal state-space model incorporates the DOAs and the angular velocities of the sources, while if it is flexible it also includes the array locations in the set of state-variables. The performance of the two approaches using both rigid and flexible arrays is evaluated using computer simulation studies and compared with a subspace tracking algorithm and a particle filter method under the same conditions. The results show that the arrayed-UKF and the arrayed-EKF show superior tracking performance, especially for low SNRs.