A Survey of Deep-learning Frameworks

被引:0
|
作者
Parvat, Aniruddha [1 ]
Chavan, Jai [1 ]
Kadam, Siddhesh [1 ]
Dev, Souradeep [1 ]
Pathak, Vidhi [1 ]
机构
[1] Sinhgad Inst Technol, Dept Comp Engn, Lonavala 410401, Maharashtra, India
来源
PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2017) | 2017年
关键词
Machine learning; Deep learning; Neural networks; Software libraries;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning is a model of machine learning loosely based on our brain. Artificial neural network has been around since the 1950s, but recent advances in hardware like graphical processing units (GPU), software like cuDNN, TensorFlow, Torch, Caffe, Theano, Deeplearning4j, etc. and new training methods have made training artificial neural networks fast and easy. In this paper, we are comparing some of the deep learning frameworks on the basis of parameters like modeling capability, interfaces available, platforms supported, parallelizing techniques supported, availability of pre-trained models, community support and documentation quality.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [31] Benchmarking Contemporary Deep Learning Hardware and Frameworks:A Survey of Qualitative Metrics
    Dai, Wei
    Berleant, Daniel
    2019 IEEE FIRST INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2019), 2019, : 148 - 155
  • [32] The orchestration of Machine Learning frameworks with data streams and GPU acceleration in Kafka-ML: A deep-learning performance comparative
    Chaves, Antonio Jesus
    Martin, Cristian
    Diaz, Manuel
    EXPERT SYSTEMS, 2024, 41 (02)
  • [33] Advanced Deep-Learning Techniques for Salient and Category-Specific Object Detection A survey
    Han, Junwei
    Zhang, Dingwen
    Cheng, Gong
    Liu, Nian
    Xu, Dong
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 84 - 100
  • [34] Fuel consumption estimation in heavy-duty trucks: Integrating vehicle weight into deep-learning frameworks
    Fan, Pengfei
    Song, Guohua
    Zhai, Zhiqiang
    Wu, Yizheng
    Yu, Lei
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2024, 130
  • [35] A trial of deep-learning detection in colonoscopy
    Dickson I.
    Nature Reviews Gastroenterology & Hepatology, 2020, 17 (4) : 194 - 194
  • [36] A Survey on Convolutional Neural Network (Deep-Learning Technique) -Based Lung Cancer Detection
    Lakshmi Narayana Gumma
    R. Thiruvengatanadhan
    LakshmiNadh Kurakula
    T. Sivaprakasam
    SN Computer Science, 2022, 3 (1)
  • [37] Survey of Methods for Addressing Class Imbalance in Deep-Learning Based Natural Language Processing
    Henning, Sophie
    Beluch, William
    Fraser, Alexander
    Friedrich, Annemarie
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 523 - 540
  • [38] Deep-learning real/bogus classification for the Tomo-e Gozen transient survey
    TAKAHASHI, I. C. H. I. R. O.
    HAMASAKI, R. Y. O.
    UEDA, N. A. O. N. O. R., I
    TANAKA, M. A. S. A. O. M., I
    TOMINAGA, N. O. Z. O. M. U.
    SAKO, S. H. I. G. E. Y. U. K. I.
    OHSAWA, R. Y. O. U.
    YOSHIDA, N. A. O. K. I.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2022, 74 (04) : 946 - 960
  • [39] Improving Testing of Deep-Learning Systems
    Deokuliar, Harsh
    Sangwan, Raghvinder S.
    Badr, Yoaukim
    Srinivasan, Satish M.
    COMMUNICATIONS OF THE ACM, 2024, 67 (03) : 44 - 48
  • [40] On the Implicit Bias in Deep-Learning Algorithms
    Vardi, Gal
    COMMUNICATIONS OF THE ACM, 2023, 66 (06) : 86 - 93