Warped Gaussian Processes in Remote Sensing Parameter Estimation and Causal Inference

被引:16
|
作者
Mateo-Sanchis, Anna [1 ]
Munoz-Mari, Jordi [1 ]
Perez-Suay, Adrian [1 ]
Camps-Valls, Gustau [1 ]
机构
[1] Univ Valencia, Image Proc Lab, Valencia 46980, Spain
基金
欧洲研究理事会;
关键词
Causal inference; Gaussian processes (GPs); inverse modeling; modeling; parameter estimation; regression; BIOPHYSICAL PARAMETERS; RETRIEVAL;
D O I
10.1109/LGRS.2018.2853760
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter introduces warped Gaussian process (WGP) regression in remote sensing applications. WGP models output observations as a parametric nonlinear transformation of a GP. The parameters of such a prior model are then learned via standard maximum likelihood. We show the good performance of the proposed model for the estimation of oceanic chlorophyll content from multispectral data, vegetation parameters (chlorophyll, leaf area index, and fractional vegetation cover) from hyperspectral data, and in the detection of the causal direction in a collection of 28 bivariate geoscience and remote sensing causal problems. The model consistently performs better than the standard GP and the more advanced heterascedastic GP model, both in terms of accuracy and more sensible confidence intervals.
引用
收藏
页码:1647 / 1651
页数:5
相关论文
共 50 条
  • [1] Gaussian Processes for Independence Tests with Non-iid Data in Causal Inference
    Flaxman, Seth R.
    Neill, Daniel B.
    Smola, Alexander J.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2016, 7 (02)
  • [2] Causal Inference in Geoscience and Remote Sensing From Observational Data
    Perez-Suay, Adrian
    Camps-Valls, Gustau
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03): : 1502 - 1513
  • [3] BIOPHYSICAL PARAMETER ESTIMATION WITH ADAPTIVE GAUSSIAN PROCESSES
    Camps-Valls, G.
    Gomez-Chova, L.
    Munoz-Mari, I.
    Vila-Frances, J.
    Amoros, J.
    del Valle-Tascon, S.
    Calpe-Maravilla, J.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2449 - +
  • [4] Gaussian Processes for Vegetation Parameter Estimation from Hyperspectral Data with Limited Ground Truth
    Gewali, Utsav B.
    Monteiro, Sildomar T.
    Saber, Eli
    REMOTE SENSING, 2019, 11 (13)
  • [5] Causal inference with Gaussian processes for support of terminating or maintaining an existing program
    Lin, Adi
    Xuan, Junyu
    Zhang, Guangquan
    Lu, Jie
    DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT, 2018, 11 : 397 - 404
  • [6] Physics-aware Gaussian processes in remote sensing
    Camps-Valls, Gustau
    Martino, Luca
    Svendsen, Daniel H.
    Campos-Taberner, Manuel
    Munoz-Mari, Jordi
    Laparra, Valero
    Luengo, David
    Javier Garcia-Haro, Francisco
    APPLIED SOFT COMPUTING, 2018, 68 : 69 - 82
  • [7] Optimal rates for parameter estimation of stationary Gaussian processes
    Es-Sebaiy, Khalifa
    Viensb, Frederi G.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3018 - 3054
  • [8] Impact of Hurricane Maria on Beach Erosion in Puerto Rico: Remote Sensing and Causal Inference
    Valentin, Jaynise M. Perez
    Muller, Marc F.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (06)
  • [9] Parameter estimation for autoregressive Gaussian-mixture processes: The EMAX algorithm
    Verbout, SM
    Ooi, JM
    Ludwig, JT
    Oppenheim, AV
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (10) : 2744 - 2756
  • [10] Warped Input Gaussian Processes for Time Series Forecasting
    Vinokur, Igor
    Tolpin, David
    CYBER SECURITY CRYPTOGRAPHY AND MACHINE LEARNING, 2021, 12716 : 205 - 220