Dynamical phase transitions in quantum spin models with antiferromagnetic long-range interactions

被引:20
作者
Halimeh, Jad C. [1 ,2 ]
Van Damme, Maarten [3 ]
Guo, Lingzhen [4 ]
Lang, Johannes [5 ]
Hauke, Philipp [1 ,2 ]
机构
[1] Univ Trento, INO CNR BEC Ctr, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Trento, Dept Phys, Via Sommar 14, I-38123 Trento, Italy
[3] Univ Ghent, Dept Phys & Astron, Krijgslaan 281, B-9000 Ghent, Belgium
[4] Max Planck Inst Sci Light, Staudtstr 2, D-91058 Erlangen, Germany
[5] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
基金
欧洲研究理事会;
关键词
RENORMALIZATION-GROUP; GAUGE-INVARIANCE; ORDER; PROPAGATION; SIMULATION;
D O I
10.1103/PhysRevB.104.115133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and condensed matter research. Whereas universality and scaling are established topics in equilibrium quantum many-body physics, out-of-equilibrium extensions of such concepts still leave much to be desired. Using exact diagonalization and the time-dependent variational principle in uniform matrix product states, we calculate the time evolution of the local order parameter and Loschmidt return rate in transverse-field Ising chains with antiferromagnetic power law-decaying interactions, and map out the corresponding rich dynamical phase diagram. Anomalous cusps in the return rate, which are ubiquitous at small quenches within the ordered phase in the case of ferromagnetic long-range interactions, are absent within the accessible timescales of our simulations in the antiferromagnetic case, showing that long-range interactions are not a sufficient condition for their appearance. We attribute this to much weaker domain-wall binding in the antiferromagnetic case. For quenches across the quantum critical point, regular cusps appear in the return rate and connect to the local order parameter changing sign, indicating the concurrence of two major concepts of dynamical phase transitions. Our results consolidate conclusions of previous works that a necessary condition for the appearance of anomalous cusps in the return rate after quenches within the ordered phase is for topologically trivial local spin flips to be the energetically dominant excitations in the spectrum of the quench Hamiltonian. Our findings are readily accessible in modern trapped-ion setups and we outline the associated experimental considerations.
引用
收藏
页数:14
相关论文
共 137 条
[1]   Quantum quench dynamics in the transverse field Ising model at nonzero temperatures [J].
Abeling, Nils O. ;
Kehrein, Stefan .
PHYSICAL REVIEW B, 2016, 93 (10)
[2]   Oscillating superfluidity of bosons in optical lattices [J].
Altman, E ;
Auerbach, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (25) :1-250404
[3]   Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach [J].
Andraschko, F. ;
Sirker, J. .
PHYSICAL REVIEW B, 2014, 89 (12)
[4]   Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate [J].
Anquez, M. ;
Robbins, B. A. ;
Bharath, H. M. ;
Boguslawski, M. ;
Hoang, T. M. ;
Chapman, M. S. .
PHYSICAL REVIEW LETTERS, 2016, 116 (15)
[5]   Relaxation of Antiferromagnetic Order in Spin-1/2 Chains Following a Quantum Quench [J].
Barmettler, Peter ;
Punk, Matthias ;
Gritsev, Vladimir ;
Demler, Eugene ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[6]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[7]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/NPHYS2252, 10.1038/nphys2252]
[8]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[9]   SIZE SCALING FOR INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R ;
PFEUTY, P .
PHYSICAL REVIEW LETTERS, 1982, 49 (07) :478-481
[10]   LARGE-SIZE CRITICAL-BEHAVIOR OF INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R .
PHYSICAL REVIEW B, 1983, 28 (07) :3955-3967