Determination of polypeptide backbone dihedral angles in solid state NMR by double quantum 13C chemical shift anisotropy measurements

被引:52
作者
Blanco, FJ [1 ]
Tycko, R [1 ]
机构
[1] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
关键词
peptide; backbone structure; solid state NMR; carbon-13; NMR; double quantum filtered spectroscopy; magic angle spinning;
D O I
10.1006/jmre.2000.2281
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A solid state NMR technique for the determination of peptide backbone conformations at specific sites in unoriented samples under magic angle spinning (MAS) is described and demonstrated on a doubly labeled polycrystalline sample of the tripeptide AlaClyGly and a sextuply labeled lyophilized sample of the 17-residue peptide MB(i + 4)EK. The technique is applicable to peptides and proteins that are labeled with C-13 at two (or more) consecutive backbone carbonyl sites. Double quantum (DQ) coherences are excited with a radiofrequency-driven recoupling sequence and evolve during a constant-time t(1) period at the sum of the two anisotropic chemical shifts. The relative orientation of the two chemical shift anisotropy (CSA) tensors, which depends on the phi and psi backbone dihedral angles, determines the t(1)-dependence of spinning sideband intensities in the DQ-filtered C-13 MAS spectrum. Experiments and simulations show that both dihedral angles can be extracted from a single data set. This technique, called DQCSA spectroscopy, may be especially useful when analyzing the backbone conformation of a polypeptide at a particular doubly labeled site in the presence of additional labeled carbons along the sequence.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
[21]   13C selective polarization and spin diffusion in a lipid bilayer-bound polypeptide by solid-state NMR [J].
Tian, F ;
Fu, RQ ;
Cross, TA .
JOURNAL OF MAGNETIC RESONANCE, 1999, 139 (02) :377-381
[22]   Measuring 13C/15N chemical shift anisotropy in [13C,15N] uniformly enriched proteins using CSA amplification [J].
Hung, Ivan ;
Ge, Yuwei ;
Liu, Xiaoli ;
Liu, Mali ;
Li, Conggang ;
Gan, Zhehong .
SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2015, 72 :96-103
[23]   Conformational Analysis of Uniformly 13C-Labeled Peptides by Rotationally Selected 13Cα-13CH3 Double-Quantum Solid-State NMR [J].
Middleton, David .
MOLECULES, 2025, 30 (03)
[24]   Using chemical shift anisotropy to resolve isotropic signals in solid-state NMR [J].
Ironside, Matthew S. ;
Stein, Robin S. ;
Duer, Melinda J. .
JOURNAL OF MAGNETIC RESONANCE, 2007, 188 (01) :49-55
[25]   Extensively sparse 13C labeling to simplify solid-state NMR 13C spectra of membrane proteins [J].
Tong, Qiong ;
Tan, Huan ;
Li, Jianping ;
Xie, Huayong ;
Zhao, Yongxiang ;
Chen, Yanke ;
Yang, Jun .
JOURNAL OF BIOMOLECULAR NMR, 2021, 75 (6-7) :245-254
[26]   Extensively sparse 13C labeling to simplify solid-state NMR 13C spectra of membrane proteins [J].
Qiong Tong ;
Huan Tan ;
Jianping Li ;
Huayong Xie ;
Yongxiang Zhao ;
Yanke Chen ;
Jun Yang .
Journal of Biomolecular NMR, 2021, 75 :245-254
[27]   Determination of sample temperature in unstable static fields by combining solid-state 79Br and 13C NMR [J].
Purusottam, Rudra N. ;
Bodenhausen, Geoffrey ;
Tekely, Piotr .
JOURNAL OF MAGNETIC RESONANCE, 2014, 246 :69-71
[28]   Ranking MOLGEN structure proposals by 13C NMR chemical shift prediction with ANALYZE [J].
Meiler, J ;
Meringer, M .
MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2002, (45) :85-108
[29]   Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II [J].
Hesse, S ;
Jäger, C .
CELLULOSE, 2005, 12 (01) :5-14
[30]   Density functional theory study of 13C NMR chemical shift of chlorinated compounds [J].
Li, Songqing ;
Zhou, Wenfeng ;
Gao, Haixiang ;
Zhou, Zhiqiang .
MAGNETIC RESONANCE IN CHEMISTRY, 2012, 50 (02) :106-113