Prospects and challenges of multi-omics data integration in toxicology

被引:167
作者
Canzler, Sebastian [1 ]
Schor, Jana [1 ]
Busch, Wibke [1 ]
Schubert, Kristin [1 ]
Rolle-Kampczyk, Ulrike E. [1 ]
Seitz, Herve [4 ]
Kamp, Hennicke [3 ]
von Bergen, Martin [1 ,2 ]
Buesen, Roland [3 ]
Hackermueller, Joerg [1 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, D-04318 Leipzig, Germany
[2] Univ Leipzig, Inst Biochem, Bruderstr 34, D-04103 Leipzig, Germany
[3] BASF SE, Expt Toxicol & Ecol, D-67056 Ludwigshafen, Germany
[4] Univ Montpellier, CNRS, UMR 9002, Inst Genet Humaine, F-34396 Montpellier 5, France
关键词
Multi-omics; Toxicology; Chemical exposure; Risk assessment; Data integration; REGULATORY TOXICOLOGY; RNA; REPRODUCIBILITY; PATHWAY; DNA; PHOSPHOPROTEOMICS; TECHNOLOGIES; CHROMATIN; TOXICITY; PROTEINS;
D O I
10.1007/s00204-020-02656-y
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Exposure of cells or organisms to chemicals can trigger a series of effects at the regulatory pathway level, which involve changes of levels, interactions, and feedback loops of biomolecules of different types. A single-omics technique, e.g., transcriptomics, will detect biomolecules of one type and thus can only capture changes in a small subset of the biological cascade. Therefore, although applying single-omics analyses can lead to the identification of biomarkers for certain exposures, they cannot provide a systemic understanding of toxicity pathways or adverse outcome pathways. Integration of multiple omics data sets promises a substantial improvement in detecting this pathway response to a toxicant, by an increase of information as such and especially by a systemic understanding. Here, we report the findings of a thorough evaluation of the prospects and challenges of multi-omics data integration in toxicological research. We review the availability of such data, discuss options for experimental design, evaluate methods for integration and analysis of multi-omics data, discuss best practices, and identify knowledge gaps. Re-analyzing published data, we demonstrate that multi-omics data integration can considerably improve the confidence in detecting a pathway response. Finally, we argue that more data need to be generated from studies with a multi-omics-focused design, to define which omics layers contribute most to the identification of a pathway response to a toxicant.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 50 条
[21]   Intricacies of single-cell multi-omics data integration [J].
Rautenstrauch, Pia ;
Vlot, Anna Hendrika Cornelia ;
Saran, Sepideh ;
Ohler, Uwe .
TRENDS IN GENETICS, 2022, 38 (02) :128-139
[22]   Spatial integration of multi-omics data from serial sections using the novel Multi-Omics Imaging Integration Toolset [J].
Wess, Maximilian ;
Andersen, Maria K. ;
Midtbust, Elise ;
Guillem, Juan Carlos Cabellos ;
Viset, Trond ;
Storkersen, Oystein ;
Krossa, Sebastian ;
Rye, Morten Beck ;
Tessem, May-Britt .
GIGASCIENCE, 2025, 14
[23]   A survey on data integration for multi-omics sample clustering [J].
Lovino, Marta ;
Randazzo, Vincenzo ;
Ciravegna, Gabriele ;
Barbiero, Pietro ;
Ficarra, Elisa ;
Cirrincione, Giansalvo .
NEUROCOMPUTING, 2022, 488 :494-508
[24]   'Multi-omics' data integration: applications in probiotics studies [J].
Kwoji, Iliya Dauda ;
Aiyegoro, Olayinka Ayobami ;
Okpeku, Moses ;
Adeleke, Matthew Adekunle .
NPJ SCIENCE OF FOOD, 2023, 7 (01)
[25]   Review on Integration Analysis and Application of Multi-omics Data [J].
Zhong, Yating ;
Lin, Yanmei ;
Chen, Dingjia ;
Peng, Yuzhong ;
Zeng, Yuanpeng .
Computer Engineering and Applications, 2024, 57 (23) :1-17
[26]   MiBiOmics: an interactive web application for multi-omics data exploration and integration [J].
Zoppi, Johanna ;
Guillaume, Jean-Francois ;
Neunlist, Michel ;
Chaffron, Samuel .
BMC BIOINFORMATICS, 2021, 22 (01)
[27]   MiBiOmics: an interactive web application for multi-omics data exploration and integration [J].
Johanna Zoppi ;
Jean-François Guillaume ;
Michel Neunlist ;
Samuel Chaffron .
BMC Bioinformatics, 22
[28]   MODIMO: Workshop on Multi-Omics Data Integration for Modelling Biological Systems [J].
Beccuti, Marco ;
Bonnici, Vincenzo ;
Giugno, Rosalba .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, :4870-4871
[29]   Supervised multiple kernel learning approaches for multi-omics data integration [J].
Briscik, Mitja ;
Tazza, Gabriele ;
Vidacs, Laszlo ;
Dillies, Marie-Agnes ;
Dejean, Sebastien .
BIODATA MINING, 2024, 17 (01)
[30]   STATegra: Multi-Omics Data Integration - A Conceptual Scheme With a Bioinformatics Pipeline [J].
Planell, Nuria ;
Lagani, Vincenzo ;
Sebastian-Leon, Patricia ;
van der Kloet, Frans ;
Ewing, Ewoud ;
Karathanasis, Nestoras ;
Urdangarin, Arantxa ;
Arozarena, Imanol ;
Jagodic, Maja ;
Tsamardinos, Ioannis ;
Tarazona, Sonia ;
Conesa, Ana ;
Tegner, Jesper ;
Gomez-Cabrero, David .
FRONTIERS IN GENETICS, 2021, 12