Prospects and challenges of multi-omics data integration in toxicology

被引:167
作者
Canzler, Sebastian [1 ]
Schor, Jana [1 ]
Busch, Wibke [1 ]
Schubert, Kristin [1 ]
Rolle-Kampczyk, Ulrike E. [1 ]
Seitz, Herve [4 ]
Kamp, Hennicke [3 ]
von Bergen, Martin [1 ,2 ]
Buesen, Roland [3 ]
Hackermueller, Joerg [1 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, D-04318 Leipzig, Germany
[2] Univ Leipzig, Inst Biochem, Bruderstr 34, D-04103 Leipzig, Germany
[3] BASF SE, Expt Toxicol & Ecol, D-67056 Ludwigshafen, Germany
[4] Univ Montpellier, CNRS, UMR 9002, Inst Genet Humaine, F-34396 Montpellier 5, France
关键词
Multi-omics; Toxicology; Chemical exposure; Risk assessment; Data integration; REGULATORY TOXICOLOGY; RNA; REPRODUCIBILITY; PATHWAY; DNA; PHOSPHOPROTEOMICS; TECHNOLOGIES; CHROMATIN; TOXICITY; PROTEINS;
D O I
10.1007/s00204-020-02656-y
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Exposure of cells or organisms to chemicals can trigger a series of effects at the regulatory pathway level, which involve changes of levels, interactions, and feedback loops of biomolecules of different types. A single-omics technique, e.g., transcriptomics, will detect biomolecules of one type and thus can only capture changes in a small subset of the biological cascade. Therefore, although applying single-omics analyses can lead to the identification of biomarkers for certain exposures, they cannot provide a systemic understanding of toxicity pathways or adverse outcome pathways. Integration of multiple omics data sets promises a substantial improvement in detecting this pathway response to a toxicant, by an increase of information as such and especially by a systemic understanding. Here, we report the findings of a thorough evaluation of the prospects and challenges of multi-omics data integration in toxicological research. We review the availability of such data, discuss options for experimental design, evaluate methods for integration and analysis of multi-omics data, discuss best practices, and identify knowledge gaps. Re-analyzing published data, we demonstrate that multi-omics data integration can considerably improve the confidence in detecting a pathway response. Finally, we argue that more data need to be generated from studies with a multi-omics-focused design, to define which omics layers contribute most to the identification of a pathway response to a toxicant.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 84 条
[1]   Integration of metabolomics, lipidomics and clinical data using a machine learning method [J].
Acharjee, Animesh ;
Ament, Zsuzsanna ;
West, James A. ;
Stanley, Elizabeth ;
Griffin, Julian L. .
BMC BIOINFORMATICS, 2016, 17
[2]   An Integrated Approach to Uncover Drivers of Cancer [J].
Akavia, Uri David ;
Litvin, Oren ;
Kim, Jessica ;
Sanchez-Garcia, Felix ;
Kotliar, Dylan ;
Causton, Helen C. ;
Pochanard, Panisa ;
Mozes, Eyal ;
Garraway, Levi A. ;
Pe'er, Dana .
CELL, 2010, 143 (06) :1005-1017
[3]  
[Anonymous], 2013, 25 ECETOC
[4]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[5]   Recent advances in phosphoproteomics and application to neurological diseases [J].
Arrington, Justine V. ;
Hsu, Chuan-Chih ;
Elder, Sarah G. ;
Tao, W. Andy .
ANALYST, 2017, 142 (23) :4373-4387
[6]  
Baker M, 2016, NATURE, V533, P452, DOI 10.1038/533452a
[7]   Systematic Functional Annotation and Visualization of Biological Networks [J].
Baryshnikova, Anastasia .
CELL SYSTEMS, 2016, 2 (06) :412-421
[8]   Methods for the integration of multi-omics data: mathematical aspects [J].
Bersanelli, Matteo ;
Mosca, Ettore ;
Remondini, Daniel ;
Giampieri, Enrico ;
Sala, Claudia ;
Castellani, Gastone ;
Milanesi, Luciano .
BMC BIOINFORMATICS, 2016, 17
[9]  
Berthold M. R., 2007, STUDIES CLASSIFICATI
[10]   MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma [J].
Boll, K. ;
Reiche, K. ;
Kasack, K. ;
Moerbt, N. ;
Kretzschmar, A. K. ;
Tomm, J. M. ;
Verhaegh, G. ;
Schalken, J. ;
von Bergen, M. ;
Horn, F. ;
Hackermueller, J. .
ONCOGENE, 2013, 32 (03) :277-285