Prospects and challenges of multi-omics data integration in toxicology

被引:154
|
作者
Canzler, Sebastian [1 ]
Schor, Jana [1 ]
Busch, Wibke [1 ]
Schubert, Kristin [1 ]
Rolle-Kampczyk, Ulrike E. [1 ]
Seitz, Herve [4 ]
Kamp, Hennicke [3 ]
von Bergen, Martin [1 ,2 ]
Buesen, Roland [3 ]
Hackermueller, Joerg [1 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, D-04318 Leipzig, Germany
[2] Univ Leipzig, Inst Biochem, Bruderstr 34, D-04103 Leipzig, Germany
[3] BASF SE, Expt Toxicol & Ecol, D-67056 Ludwigshafen, Germany
[4] Univ Montpellier, CNRS, UMR 9002, Inst Genet Humaine, F-34396 Montpellier 5, France
关键词
Multi-omics; Toxicology; Chemical exposure; Risk assessment; Data integration; REGULATORY TOXICOLOGY; RNA; REPRODUCIBILITY; PATHWAY; DNA; PHOSPHOPROTEOMICS; TECHNOLOGIES; CHROMATIN; TOXICITY; PROTEINS;
D O I
10.1007/s00204-020-02656-y
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Exposure of cells or organisms to chemicals can trigger a series of effects at the regulatory pathway level, which involve changes of levels, interactions, and feedback loops of biomolecules of different types. A single-omics technique, e.g., transcriptomics, will detect biomolecules of one type and thus can only capture changes in a small subset of the biological cascade. Therefore, although applying single-omics analyses can lead to the identification of biomarkers for certain exposures, they cannot provide a systemic understanding of toxicity pathways or adverse outcome pathways. Integration of multiple omics data sets promises a substantial improvement in detecting this pathway response to a toxicant, by an increase of information as such and especially by a systemic understanding. Here, we report the findings of a thorough evaluation of the prospects and challenges of multi-omics data integration in toxicological research. We review the availability of such data, discuss options for experimental design, evaluate methods for integration and analysis of multi-omics data, discuss best practices, and identify knowledge gaps. Re-analyzing published data, we demonstrate that multi-omics data integration can considerably improve the confidence in detecting a pathway response. Finally, we argue that more data need to be generated from studies with a multi-omics-focused design, to define which omics layers contribute most to the identification of a pathway response to a toxicant.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 50 条
  • [1] Prospects and challenges of multi-omics data integration in toxicology
    Sebastian Canzler
    Jana Schor
    Wibke Busch
    Kristin Schubert
    Ulrike E. Rolle-Kampczyk
    Hervé Seitz
    Hennicke Kamp
    Martin von Bergen
    Roland Buesen
    Jörg Hackermüller
    Archives of Toxicology, 2020, 94 : 371 - 388
  • [2] Statistical Challenges in Multi-omics Integration
    Sebastiani, Paola
    Leshchk, Anastasia
    Song, Zeyuan
    Karagiannis, Tanya T.
    Gurinovich, Anastasia
    Bae, Harold
    Li, Mengze
    Monti, Stefano
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 530 - 530
  • [3] Integration of multi-omics and non-omics data: AI approaches and challenges
    Lopez de Maturana, Evangelina
    Sabroso, Sergio
    Malats, Nuria
    HUMAN HEREDITY, 2022, VOL. (SUPPL 1) : 24 - 24
  • [4] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [5] Multi-omics integration analysis: Tools and applications in environmental toxicology☆
    Shi, Chengcheng
    Cheng, Lin
    Yu, Ying
    Chen, Shuangshuang
    Dai, Yubing
    Yang, Jiajia
    Zhang, Haijun
    Chen, Jiping
    Geng, Ningbo
    ENVIRONMENTAL POLLUTION, 2024, 360
  • [6] A cloud solution for multi-omics data integration
    Tordini, Fabio
    2016 INT IEEE CONFERENCES ON UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS (UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016, : 559 - 566
  • [7] Towards multi-omics synthetic data integration
    Selvarajoo, Kumar
    Maurer-Stroh, Sebastian
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [8] Multi-Omics and Artificial Intelligence-Guided Data Integration in Chronic Liver Disease: Prospects and Challenges for Precision Medicine
    Lin, Biaoyang
    Ma, Yingying
    Wu, ShengJun
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2022, 26 (08) : 415 - 421
  • [9] Integration of multi-omics technologies for crop improvement: Status and prospects
    Zhang, Ru
    Zhang, Cuiping
    Yu, Chengyu
    Dong, Jungang
    Hu, Jihong
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [10] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)