Spatial mode rotator based on mechanically induced twist and bending in few-mode fibers

被引:2
|
作者
Yu, Dawei [1 ]
Fu, Songnian [1 ]
Tang, Ming [1 ]
Shum, Perry [2 ]
Liu, Deming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Natl Engineecoil Lab Next Generat Internet Access, Wuhan 430074, Peoples R China
[2] Nanyang Technol Univ, Photon Ctr Excellence, Singapore 637553, Singapore
关键词
spatial mode rotator; few-mode fiber; optical fiber; mode division multiplexing; fiber bending; fiber twisting; optical fiber communication; TRANSMISSION;
D O I
10.1117/12.2076515
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, few-mode fiber (FMF) based mode division multiplexing (MDM) transmission together with multi-input multi-output (MIMO) signal processing technique is ideal candidate to solve future single mode fiber (SMF) capacity crunch. Most existing mode division multiplexers/demultiplexers (MMUX/DEMMUX) have a specific mode orientation for high-order non-circular symmetric mode. Taking the phase plate based DEMMUX as example and converting LP11 mode to fundamental LP01 mode, we need optimize input mode orientation the same as the phase pattern of phase plate. In this submission, we propose and experimentally demonstrate a spatial mode rotator based on mechanically induced twisting and bending in a step-index FMF. We theoretically find that the mode coupling strength between vector modes with similar propagation constants is determined by the FMF bending and twisting. When the input LP11 mode cluster including TE01, HE21a, HE21b, and TM01 mode are properly perturbed, the output optical field is superposed as LP11 mode with a rotation. Therefore, the proposed spatial mode rotator is composed of three FMF coils with a radius of 16 mm, while the number of each coil is 2, 1, and 2, respectively. Consequently, we are able to rotate the LP11 mode with arbitrary angle within 360 degrees range using the same conventional configuration of polarization controller ( PC). The insertion loss of proposed spatial mode rotator is less than 0.82 dB, when the operation wavelength varies from 1540 nm to 1560nm. In particular, from the measured mode profile, there exists little crosstalk between LP01 mode and LP11 mode during mode rotation operation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Experimental analysis of twist-induced mode coupling in few-mode fibers
    Piccirilli, Simone
    Palmieri, Luca
    Santagiustina, Marco
    Galtarossa, Andrea
    2016 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2016,
  • [2] Study on bending losses of few-mode optical fibers
    Zheng Xing-Juan
    Ren Guo-Bin
    Huang Lin
    Zheng He-Ling
    ACTA PHYSICA SINICA, 2016, 65 (06)
  • [3] Mode Coupling in Few-Mode Fibers Induced by Mechanical Stress
    Schulze, Christian
    Bruening, Robert
    Schroeter, Siegmund
    Duparre, Michael
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (21) : 4488 - 4496
  • [4] Block-Based Mode Decomposition in Few-Mode Fibers
    Wang, Chenyu
    Zhang, Jianyong
    Yan, Baorui
    Mi, Shuchao
    Fan, Guofang
    Wang, Muguang
    Zhang, Peiying
    PHOTONICS, 2025, 12 (01)
  • [5] Few-Mode Lensed Fibers
    Wen, He
    Liu, Huiyuan
    Zhang, Yuanhang
    Zhao, Jian
    Sillard, Pierre
    Correa, Rodrigo Amezcua
    Li, Guifang
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (24) : 5794 - 5799
  • [6] Few-Mode Fibers with Improved Mode Spacing
    May, Alexander R.
    Zervas, Michalis N.
    ECOC 2015 41ST EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, 2015,
  • [7] Fast mode decomposition in few-mode fibers
    Egor S. Manuylovich
    Vladislav V. Dvoyrin
    Sergei K. Turitsyn
    Nature Communications, 11
  • [8] Fast mode decomposition in few-mode fibers
    Manuylovich, Egor S.
    Dvoyrin, Vladislav V.
    Turitsyn, Sergei K.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] Splice Induced Performance Penalty in Mode Multiplexed Few-Mode Fibers
    Rademacher, Georg
    Warm, Stefan
    Petermann, Klaus
    2013 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES, 2013, : 123 - 124
  • [10] Design of few-mode microstructured optical fibers with low bending loss
    Wang, Hua
    Chen, Ming-Yang
    Zhu, Yuan-Feng
    Cai, Zhi-Min
    Li, Lu-Ming
    Chen, Kun
    Chen, Jian
    Chen, Lei
    Yang, Ji-Hai
    OPTICAL ENGINEERING, 2013, 52 (08)