PointAcc: Efficient Point Cloud Accelerator

被引:57
作者
Lin, Yujun [1 ]
Zhang, Zhekai [1 ]
Tang, Haotian [1 ]
Wang, Hanrui [1 ]
Han, Song [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
来源
PROCEEDINGS OF 54TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, MICRO 2021 | 2021年
基金
美国国家科学基金会;
关键词
point cloud; neural network accelerator; sparse convolution;
D O I
10.1145/3466752.3480084
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning on point clouds plays a vital role in a wide range of applications such as autonomous driving and AR/VR. These applications interact with people in real time on edge devices and thus require low latency and low energy. Compared to projecting the point cloud to 2D space, directly processing 3D point cloud yields higher accuracy and lower #MACs. However, the extremely sparse nature of point cloud poses challenges to hardware acceleration. For example, we need to explicitly determine the nonzero outputs and search for the nonzero neighbors (mapping operation), which is unsupported in existing accelerators. Furthermore, explicit gather and scatter of sparse features are required, resulting in large data movement overhead. In this paper, we comprehensively analyze the performance bottleneck of modern point cloud networks on CPU/GPU/TPU. To address the challenges, we then present PointAcc, a novel point cloud deep learning accelerator. PointAcc maps diverse mapping operations onto one versatile ranking-based kernel, streams the sparse computation with configurable caching, and temporally fuses consecutive dense layers to reduce the memory footprint. Evaluated on 8 point cloud models across 4 applications, PointAcc achieves 3.7x speedup and 22x energy savings over RTX 2080Ti GPU. Co-designed with light-weight neural networks, PointAcc rivals the prior accelerator Mesorasi by 100x speedup with 9.1% higher accuracy running segmentation on the S3DIS dataset. PointAcc paves the way for efficient point cloud recognition.
引用
收藏
页码:449 / 461
页数:13
相关论文
共 47 条
[1]   Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing [J].
Albericio, Jorge ;
Judd, Patrick ;
Hetherington, Tayler ;
Aamodt, Tor ;
Jerger, Natalie Enright ;
Moshovos, Andreas .
2016 ACM/IEEE 43RD ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2016, :1-13
[2]  
Alwani M, 2016, INT SYMP MICROARCH
[3]   3D Semantic Parsing of Large-Scale Indoor Spaces [J].
Armeni, Iro ;
Sener, Ozan ;
Zamir, Amir R. ;
Jiang, Helen ;
Brilakis, Ioannis ;
Fischer, Martin ;
Savarese, Silvio .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1534-1543
[4]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[5]  
Chang AX., 2015, ShapeNet: an InformationRich 3D Model Repository, V1512, P03012
[6]   Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks [J].
Chen, Yu-Hsin ;
Krishna, Tushar ;
Emer, Joel S. ;
Sze, Vivienne .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (01) :127-138
[7]   DaDianNao: A Machine-Learning Supercomputer [J].
Chen, Yunji ;
Luo, Tao ;
Liu, Shaoli ;
Zhang, Shijin ;
He, Liqiang ;
Wang, Jia ;
Li, Ling ;
Chen, Tianshi ;
Xu, Zhiwei ;
Sun, Ninghui ;
Temam, Olivier .
2014 47TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2014, :609-622
[8]   (AF)2-S3Net: Attentive Feature Fusion with Adaptive Feature Selection for Sparse Semantic Segmentation Network [J].
Cheng, Ran ;
Razani, Ryan ;
Taghavi, Ehsan ;
Li, Enxu ;
Liu, Bingbing .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12542-12551
[9]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[10]   Mesorasi: Architecture Support for Point Cloud Analytics via Delayed-Aggregation [J].
Feng, Yu ;
Tian, Boyuan ;
Xu, Tiancheng ;
Whatmough, Paul ;
Zhu, Yuhao .
2020 53RD ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO 2020), 2020, :1037-1050