Piezoresistive Response of Quasi-One-Dimensional ZnO Nanowires Using an in Situ Electromechanical Device

被引:68
作者
Kaps, Soeren [1 ]
Bhowmick, Sanjit [2 ]
Groettrup, Jorit [1 ]
Hrkac, Viktor [1 ]
Stauffer, Douglas [2 ]
Guo, Hua [3 ,4 ]
Warren, Oden L. [2 ]
Adam, Jost [5 ]
Kienle, Lorenz [1 ]
Minor, Andrew M. [3 ,4 ]
Adelung, Rainer [1 ]
Mishra, Yogendra Kumar [1 ]
机构
[1] Univ Kiel, Inst Mat Sci, Kaiserstr 2, D-24143 Kiel, Germany
[2] Bruker Nano Surfaces, Minneapolis, MN 55344 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[5] Univ Southern Denmark, NanoSYD, Mads Clausen Inst, Als 2, DK-6400 Sonderborg, Denmark
关键词
OXIDE; NANOPARTICLES; FIELD; NANOGENERATORS; FABRICATION; EMISSION; NETWORKS; GROWTH;
D O I
10.1021/acsomega.7b00041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quasi-one-dimensional structures from metal oxides have shown remarkable potentials with regard to their applicability in advanced technologies ranging from ultra-responsive nanoelectronic devices to advanced healthcare tools. Particularly due to the piezoresistive effects, zinc oxide (ZnO)-based nanowires showed outstanding performance in a large number of applications, including energy harvesting, flexible electronics, smart sensors, etc. In the present work, we demonstrate the versatile crystal engineering of ZnO nano-and microwires (up to centimeter length scales) by a simple flame transport process. To investigate the piezoresistive properties, particular ZnO nanowires were integrated on an electrical push-to-pull device, which enables the application of tensile strain and measurement of in situ electrical properties. The results from ZnO nanowires revealed a periodic variation in stress with respect to the applied periodic potential, which has been discussed in terms of defect relaxations.
引用
收藏
页码:2985 / 2993
页数:9
相关论文
共 70 条
[1]   Strain-controlled growth of nanowires within thin-film cracks [J].
Adelung, R ;
Aktas, OC ;
Franc, J ;
Biswas, A ;
Kunz, R ;
Elbahri, M ;
Kanzow, J ;
Schürmann, U ;
Faupel, F .
NATURE MATERIALS, 2004, 3 (06) :375-379
[2]  
Cardoso GWA, 2014, MATER RES-IBERO-AM J, V17, P588, DOI [10.1590/S1516-14392014005000080, 10.1590/S1516-14392014000300008]
[3]   Intravaginal Zinc Oxide Tetrapod Nanoparticles as Novel Immunoprotective Agents against Genital Herpes [J].
Antoine, Thessicar E. ;
Hadigal, Satvik R. ;
Yakoub, Abraam M. ;
Mishra, Yogendra Kumar ;
Bhattacharya, Palash ;
Haddad, Christine ;
Valyi-Nagy, Tibor ;
Adelung, Rainer ;
Prabhakar, Bellur S. ;
Shukla, Deepak .
JOURNAL OF IMMUNOLOGY, 2016, 196 (11) :4566-4575
[4]   Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage [J].
Bae, Joonho ;
Song, Min Kyu ;
Park, Young Jun ;
Kim, Jong Min ;
Liu, Meilin ;
Wang, Zhong Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1683-1687
[5]   In Situ Electron Microscopy Four-Point Electromechanical Characterization of Freestanding Metallic and Semiconducting Nanowires [J].
Bernal, Rodrigo A. ;
Filleter, Tobin ;
Connell, Justin G. ;
Sohn, Kwonnam ;
Huang, Jiaxing ;
Lauhon, Lincoln J. ;
Espinosa, Horacio D. .
SMALL, 2014, 10 (04) :725-733
[6]   Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates [J].
Cao, BQ ;
Cai, WP ;
Zeng, HB ;
Duan, GT .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (07)
[7]   Sound-Driven Piezoelectric Nanowire-Based Nanogenerators [J].
Cha, Seung Nam ;
Seo, Ju-Seok ;
Kim, Seong Min ;
Kim, Hyun Jin ;
Park, Young Jun ;
Kim, Sang-Woo ;
Kim, Jong Min .
ADVANCED MATERIALS, 2010, 22 (42) :4726-+
[8]  
CHEN CQ, 2006, PHYS REV LETT, V96
[9]   Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation [J].
Chen, Kuan-I ;
Li, Bor-Ran ;
Chen, Yit-Tsong .
NANO TODAY, 2011, 6 (02) :131-154
[10]   Branched nanowires: Synthesis and energy applications [J].
Cheng, Chuanwei ;
Fan, Hong Jin .
NANO TODAY, 2012, 7 (04) :327-343