A gap theorem for minimal submanifolds in Euclidean space

被引:1
作者
Zhao, Entao [1 ,2 ]
Cao, Shunjuan [3 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] Taipei Off, Natl Ctr Theoret Sci, Taipei 10617, Taiwan
[3] Zhejiang Agr & Forestry Univ, Dept Math, Linan 311300, Peoples R China
基金
中国国家自然科学基金;
关键词
MEAN-CURVATURE; PROOF;
D O I
10.1016/j.crma.2014.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for a complete minimal submanifold M-n immersed in the Euclidean space Rn+d, if the second fundamental form A and the intrinsic distance function r from a fixed point satisfy r(x)vertical bar A vertical bar(x) <= epsilon for all x is an element of M, where epsilon is a positive constant depending only on n, then M is an affine subspace of Rn+d. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:173 / 177
页数:5
相关论文
共 20 条